Virtuelle Institute

In vivo studies of biodegradable magnesium based implant materials

VH-VI-523 Prof. Hartmut Schlüter

Das Helmholtz-Zentrum Geesthacht hat in Zusammenarbeit mit den Universitätskliniken in Hamburg, Hannover und Graz sowie weiteren Partnern ein Virtuelles Institut gegründet, dessen Schwerpunkt auf abbaubaren Magnesium-Implantaten liegt. Ein Ziel des VI MetBioMat ist es, Prototypen von orthopädischen Implantaten zu entwickeln und deren Wirkung in Bezug auf die Knochenbildung zu untersuchen.

Die Mass Spectrometric Proteomics-Gruppe analysiert als Teil des Virtuellen Instituts die Effekte von Magnesium-Werkstoffen auf Zellen auf molekularer Ebene. Wir unterstützen unsere Partner mit differentieller Proteomanalytik von biologischen Proben aus Zellkultur und in-vivo-Studien.

Virtuelles Institut MetBioMat

PIER: Partnership for Innovation, Education and Research

Native Mass Spectrometry

Prof. Hartmut Schlüter

A project towards a prototype mass spectrometer for delivery of biological samples at X-ray Free-Electron Lasers Free-Electron Lasers (FELs) offers the possibility to study the structure of single molecules in a time-resolved manner. This can circumvent the bottleneck of crystallisation to obtain high resolution struc-tures of biomolecules. However, current sample delivery techniques, such as liquid jets and aerody-namic lens systems, either suffer from an increased background or are in-efficient, whereby the majority of the expensive samples are lost.

Our projects aims at developing a delivery system based on a native mass spectrometer. This technique consumes much less sample and preserves the structure of protein complexes. The samples are introduced as ions, which enables storage and timed release of particles. Thereby, an increased density at the interaction region with the FEL beam can be achieved. Samples can also be mass-selected prior to the interaction region making the technique especially attractive to monitor reactions involving minor or transient species. Such an online purification is difficult to implement with other techniques. The mass spectrometer will first be used at FLASH. Here, studies on FEL-based fragmentation can offer valuable insights into the topology of biomolecules.
Ultimately, the project aims at the design of a native mass spectrometer for high resolution imaging (diffract before destroy) at the European XFEL. Here, the online purification can reduce the computational costs to filter diffraction patterns tremendously and allows low populated species to be studied, which would otherwise pass unnoticed. (Autoren: Hartmut Schlüter, Charlotte Uetrecht, Joachim Schulz)