AG Signal Transduction in Cancer

Arbeitsschwerpunkte

  • Untersuchungen zur Funktion des PI3-Kinase/AKT/mTOR-Signalwegs in Karzinomen und zirkulierenden Tumorzellen (CTCs)
  • Entwicklung von Kombinationstherapien mit AKT- und mTOR-Inhibitoren in präklinischen Studien beim hepatozellulären Karzinom, Cholangiokarzinom, Mammakarzinom und bei Kopf-Hals-Tumoren
  • Identifizierung von molekularen Mechanismen, die zur Entstehung von Therapie-Resistenzen führen können
  • Identifizierung von Biomarkern zur Vorhersage von rezidivierenden Lebermetastasen beim kolorektalen Karzinom
  • Entwicklung von Mikro-Bioreaktoren (lab-on-a-chip) zur quantitativen Analyse von spezifischen Inhibitoren in 3D-Tumor-Kulturen (Tumoroide) (Kooperation mit Prof. Trieu, Institut für Mikrosystemtechnik, TU Hamburg-Harburg)
  • Untersuchungen zur Funktion von SHIP1 als Tumorsuppressor in der Leukämogenese und als Onkogen in der Karzinogenese
  • Strukturanalyse der Inositol-5-Phosphatase SHIP1 (Kooperation mit Frau Dr. Witt, CSSB/DE und Prof. Kirchmair, Zentrum für Bioinformatik, Universität Wien)

Vorstellung der Projekte

Der PI3K/AKT/mTOR Signalweg als mögliches molekulares Target in zirkulierenden Tumorzellen (Projektleitung: Dr. Daniel J. Smit und Prof. Dr. Manfred Jücker)

Zirkulierende Tumorzellen (CTCs) sind Zellen, die die Adhäsion an den Primärtumor verloren haben und im peripheren Blut zirkulieren. Aktuelle Veröffentlichungen deuten darauf hin, dass zirkulierende Tumorzellen die Initiatoren der Metastasierung sind und daher ein erwähnenswertes Ziel für neue therapeutische Strategien darstellen. Es hat sich gezeigt, dass der PI3K/AKT/mTOR-Signalweg in Tumorerkrankungen häufig konstitutiv aktiviert ist. Die Aktivierung des Signalweges führt zu gesteigerter Proliferation, Angiogenese, verminderter Apoptose, epithelialer-mesenchymaler Transition und einem erhöhtem Metastasierungspotenzial. In der Vergangenheit wurden viele mögliche Ziele für eine Hemmung innerhalb des Signalweges identifiziert, darunter auch die Schlüsselproteine AKT und mTOR.

In unserer jüngsten Publikation (Smit et al., 2020) analysierten wir in Zusammenarbeit mit den Arbeitsgruppen von Prof. Catherine Alix-Panabières (Laboratory of Rare Human Circulating Cells, Universitätsklinikum Montpellier) und Prof. Klaus Pantel (Institut für Tumorbiologie, Universitätsklinikum Hamburg-Eppendorf) die funktionelle Rolle des PI3K/AKT/mTOR-Signalweges in der zirkulierenden Tumorzelllinie 'CTC-MCC-41', die aus dem Blut eines Patienten mit kolorektalem Karzinom isoliert wurde. Mit Hilfe der Substanzen MK2206 und RAD001 konnten wir zeigen, dass die Zelllinie sensitiv für eine AKT- und mTOR-Inhibition im nanomolaren Bereich ist. Stabile Isoform-spezifische Knockdowns von AKT1 und AKT2 in der CTC-MCC-41 Zelllinie beeinträchtigten signifikant die Proliferation. Diese Daten zeigen, dass der PI3K/AKT/mTOR-Signalweg eine Schlüsselrolle für die Proliferation von CTC-MCC-41-Zellen spielt, und legen nahe, dass die spezifische Hemmung dieses Signalweges bei CTCs ein vielversprechender Ansatz zur Hemmung der Metastasierung sein könnte.

Aktuelle ausgewählte Publikationen:

Smit, D.J.; Pantel, K.; Jücker, M. Circulating tumor cells as a promising target for individualized drug susceptibility tests in cancer therapy. Biochemical Pharmacology 2021, 188, 114589, doi: 10.1016/j.bcp.2021.114589.

Smit, D. J., Cayrefourcq, L., Haider, M.-T., Hinz, N., Pantel, K., Alix-Panabières, C., Jücker, M. High Sensitivity of Circulating Tumor Cells Derived from a Colorectal Cancer Patient for Dual Inhibition with AKT and mTOR Inhibitors. Cells 2020, 9, 2129. doi: 10.3390/cells9092129.

Koch, C.; Kuske, A.; Joosse S. A.; Yigit, G.; Sflomos, G.; Thaler, S.; Smit, D.J.; Werner, S.; Borgmann, K.; Gärtner, S.; Mossahebi Mohammadi, P.; Battista, L.; Cayrefourcq, L.; Altmüller, J.; Salinas-Riester, G.; Raithatha, K.; Zibat, A.; Goy, Y.; Ott, L.; Bartkowiak, K.; Tan, T. Z.; Zhou, Q.; Speicher, M. R.; Müller, V.; Gorges, T. M.; Jücker, M.; Thiery, J.-P.; Brisken, C.; Riethdorf, S.; Alix-Panabières, C.; Pantel, K. Characterization of circulating breast cancer cells with tumorigenic and metastatic capacity. EMBO Mol. Med. 2020, 12, e11908. doi: 10.15252/emmm.201911908.

Isoformen-spezifische Wirkung von AKT auf die Knochenmetastasierung von Brustkrebs (Projektleitung: Prof. Dr. Manfred Jücker)

Brustkrebs ist der häufigste Tumor bei Frauen und die Knochenmetastasierung von Brustkrebs ist mit einer schlechten Prognose und einem geringeren Überleben assoziiert. AKT (Protein-Kinase B), spielt eine zentrale Rolle in der Regulation zellulärer Prozesse und hat wichtige Effekte auf die Knochenmetastasierung von Brustkrebs. AKT kommt in drei Isoformen (AKT1, AKT2 und AKT3) vor, welche teils unterschiedliche Effekte auf die Signaltransduktion in Krebszellen zeigen. Daher untersuchen wir die Rolle der AKT-Isoformen in Brustkrebszellen, wie z.B. auf Proliferation, Migration, Chemotaxis und Knochenmetastasierung im Mausversuch mit Hilfe eines stabilen Isoform-spezifischen Knockdown der AKT-Isoformen in knochenspezifischen Brustkrebssublinien. Unser Ziel ist weitere Erkenntnis über AKT-Isoform-spezifische Signaltransduktion in Knochenmetastasen zu bekommen und daraus mögliche klinische Ansätze für die Inhibition von AKT-Isoformen für Brustkrebs abzuleiten.

Aktuelle ausgewählte Publikationen:

Hinz, N.; Jücker, M. AKT in Bone Metastasis of Solid Tumors: A Comprehensive Review. Cancers (Basel) 2021, 13, 2287, doi:10.3390/cancers13102287.

Hinz, N.; Baranowsky, A.; Horn, M.; Kriegs, M.; Sibbertsen, F.; Smit, D.J.; Clezardin, P.; Lange, T.; Schinke, T.; Jücker, M. Knockdown of AKT3 Activates HER2 and DDR Kinases in Bone-Seeking Breast Cancer Cells, Promotes Metastasis In Vivo and Attenuates the TGFβ/CTGF Axis. Cells 2021, 10, 430, doi:10.3390/cells10020430.

Hinz, N.; Jücker, M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal 2019, 17, 154, doi:10.1186/s12964-019-0450-3.

Untersuchungen von SHIP1 als Tumorsuppressor der Leukämogenese (Projektleitung Prof. Dr. Manfred Jücker)

Der PI3-Kinase/AKT-Signalweg ist bei ca. 50-70% der Patienten mit einer akuten myeloischen Leukämie (AML) konstitutiv aktiviert und vermittelt sowohl proliferationsfördernde als auch anti-apoptotische Signale. Die Inositol-5-Phosphatase SHIP1 ist ein negativer Regulator des PI3K/AKT Signalweges in hämatopoetischen Zellen (Helgason et al., 1998, Li et al., 1999). In unserer Arbeitsgruppe untersuchen wir die funktionelle Rolle von SHIP1 in der Leukämogenese.

Wir konnten zeigen, dass die Wiederherstellung der SHIP1-Expression in der humanen T-Zelllinie Jurkat zu verminderter Proliferation durch eine Verlängerung der G1 Phase des Zellzyklus führt (Horn, et al 2004) und dass die Vektor-vermittelte Überexpression von SHIP1 in CD34+-Zellen von AML-Patienten die Proliferation dieser Zellen in vitro reduziert (Metzner, et al 2009). In einem Xenograft-Mausmodell konnten wir zeigen, dass die Überexpression von SHIP1 in der humanen AML Zelllinie UKE-1 nach Transplantation in NSG-Mäuse zu einer Verlängerung der Überlebenszeit der Mäuse führt (Täger 2017).

Ein Kennzeichen von Tumorsuppressoren ist deren mutationsbedingte Inaktivierung in Zellen. Auch für das SHIP1-kodierende Gen INPP5D wurden verschiedene Mutationen in AML-Patienten gefunden. Unsere Arbeitsgruppe konnte zeigen, dass einige dieser SHIP1-Mutationen eine stark reduzierte enzymatische Aktivität haben und den PI3K/AKT-Signalweg nicht mehr negativ regulieren können (Brauer, et al 2012) wodurch auch ihre tumorsupprimierende Wirkung auf das Wachstum von humanen AML-Zellen im Xenograft-Mausmodell verloren geht (Täger et al 2017).

Als molekularen Mechanismus zur Inaktivierung von SHIP1 konnten wir nun eine Phosphorylierung von SHIP1 am Tyrosinrest 1021 durch Tyrosinkinasen der SRC-Familie identifizieren, die zum proteasomalen Abbau von SHIP1 und damit zu dessen Inaktivierung führen kann (Ehm et al., unveröffentlichte Daten).

In weiteren Studien mit einem induzierbaren Leukämie-Mausmodell soll nun durch Deletion von SHIP1 in multipotenten hämatopoetischen Stamm- und Vorläuferzellen die Rolle von SHIP1 als Tumorsuppressor bei der Initiation und Entwicklung der AML in vivo untersucht werden. Darüber hinaus planen wir die zu Grunde liegende Signalwege mittels Genexpressionsstudien zu identifizieren.

3R-Projekt (BMBF): Reduzierung von Tierversuchen in präklinischen Studien zur Untersuchung von Medikamenten für die individualisierte Krebstherapie durch in vitro-Versuche mit Tumor-Gewebekukturen (Tumoroide) (Projektleitung Prof. Dr. Manfred Jücker)

In dem vorliegenden Projekt soll im Hinblick auf eine mögliche Reduzierung von Tierversuchen durch eine vergleichende Analyse experimentell ermittelt werden, ob in vitro-Untersuchungen zur Wirkung von Hemmstoffen auf das Wachstum von primären Tumorzellen von Patienten mit kolorektalen Karzinomen (CRC) eine vergleichbare Aussage zu in vivo-Untersuchungen zur Wirkung der gleichen Hemmstoffe auf das Wachstum von primären Xenotransplantaten (PDX) in der Maus haben. Dazu werden die Primärtumore von Patienten mit synchron hepatisch metastasierten kolorektalen Karzinomen nach Aufklärung und schriftlicher Konsentierung sowie vorliegendem Ethikvotum analysiert. Als in vitro-Untersuchen sollen Proliferation, Vitalität, Apoptose, Migration, die Invasion sowie die 3D-Tumoroid-Bildung analysiert werden. Dies soll mit dem Wachstum der primären Tumorzellen nach subkutaner Transplantation in der Maus verglichen werden. Bei dem in diesem Projekt verwendeten Hemmstoff FOLFOX handelt es sich um eine Kombination aus den Substanzen 5-Fluoruracil, Folinsäure und Oxaliplatin, die beim Patienten i.v. verabreicht werden. Das sogenannte FOLFOX-Regime stellt die derzeitige Standard-Chemotherapie zur adjuvanten und palliativen Behandlung des CRC dar.

Die Ergebnisse zur Wirkung der FOLFOX-Therapie aus den in vitro-Assays werden dann mit deren Wirkung im Mausversuch verglichen. Sollte sich eine dieser in vitro-Methoden als gleichwertig zu den Mausversuchen herausstellen, so könnte diese Methode zukünftig als Ersatz zumindest für einen Teil der derzeitig durchgeführten Tierversuche verwendet werden, woraus eine Reduzierung von Mausversuchen resultieren würde.

Ausbildung:

- Projektstudien (MLS Studiengang)

- Bachelorarbeiten

- Masterarbeiten

- Doktorarbeiten (Dr. rer. nat., Dr. med., Dr. med. dent., Dr. rer. biol. hum., PhD)

- Hospitationen und Praktika

2022

Investigation of the function of the PI3-Kinase / AKT signaling pathway for leukemogenesis and therapy of acute childhood lymphoblastic leukemia (ALL)
Ehm P, Grottke A, Bettin B, Jücker M
CELL SIGNAL. 2022;93:.

Activation of CD44/PAK1/AKT signaling promotes resistance to FGFR1 inhibition in squamous-cell lung cancer
Elakad O, Häupl B, Labitzky V, Yao S, Küffer S, von Hammerstein-Equord A, Danner B, Jücker M, Urlaub H, Lange T, Ströbel P, Oellerich T, Bohnenberger H
NPJ PRECIS ONCOL. 2022;6(1):52.

JAK2-V617F is a negative regulation factor of SHIP1 protein and thus influences the AKT signaling pathway in patients with Myeloproliferative Neoplasm (MPN)
Glück M, Dally L, Jücker M, Ehm P
INT J BIOCHEM CELL B. 2022;149:106229.

Combined Targeting of AKT and mTOR Inhibits Tumor Formation of EpCAM+ and CD90+ Human Hepatocellular Carcinoma Cells in an Orthotopic Mouse Model
Moustafa M, Dähling K, Günther A, Riebandt L, Smit D, Riecken K, Schröder C, Zhuang R, Krech T, Kriegs M, Fehse B, Izbicki J, Fischer L, Nashan B, Li J, Jücker M
CANCERS. 2022;14(8):.

The Functional Role of Extracellular Matrix Proteins in Cancer
Popova N, Jücker M
CANCERS. 2022;14(1):.

2021

Targeted PI3K/AKT-hyperactivation induces cell death in chronic lymphocytic leukemia
Ecker V, Stumpf M, Brandmeier L, Neumayer T, Pfeuffer L, Engleitner T, Ringshausen I, Nelson N, Jücker M, Wanninger S, Zenz T, Wendtner C, Manske K, Steiger K, Rad R, Müschen M, Ruland J, Buchner M
NAT COMMUN. 2021;12(1):3526.

Knockdown of AKT3 Activates HER2 and DDR Kinases in Bone-Seeking Breast Cancer Cells, Promotes Metastasis In Vivo and Attenuates the TGFβ/CTGF Axis
Hinz N, Baranowsky A, Horn M, Kriegs M, Sibbertsen F, Smit D, Clezardin P, Lange T, Schinke T, Jücker M
CELLS-BASEL. 2021;10(2):.

AKT in Bone Metastasis of Solid Tumors: A Comprehensive Review
Hinz N, Jücker M
CANCERS. 2021;13(10):2287.

Truncated O-GalNAc glycans impact on fundamental signaling pathways in pancreatic cancer
Hofmann B, Picksak A, Kwiatkowski M, Grupp K, Jücker M, Bachmann K, Mercanoglu B, Izbicki J, Kahlert C, Bockhorn M, Güngör C, Ewald F, Wolters-Eisfeld G
GLYCOBIOLOGY. 2021.

AKT1 and PTEN show the highest affinities among phosphoinositide binding proteins for the second messengers PtdIns(3,4,5)P3 and PtdIns(3,4)P2
Nelson N, Razeto A, Gilardi A, Grättinger M, Kirchmair J, Jücker M
BIOCHEM BIOPH RES CO. 2021;568:110-115.

Combined Targeting of AKT and mTOR Synergistically Inhibits Formation of Primary Colorectal Carcinoma Tumouroids In Vitro: A 3D Tumour Model for Pre-therapeutic Drug Screening
Nörz D, Mullins C, Smit D, Linnebacher M, Hagel G, Mirdogan A, Siekiera J, Ehm P, Izbicki J, Block A, Thastrup O, Jücker M
ANTICANCER RES. 2021;41(5):2257-2275.

The Role of mTOR Signaling as a Therapeutic Target in Cancer
Popova N, Jücker M
INT J MOL SCI. 2021;22(4):1743.

Circulating tumor cells as a promising target for individualized drug susceptibility tests in cancer therapy
Smit D, Pantel K, Jücker M
BIOCHEM PHARMACOL. 2021;188:114589.

2020

Characterization of circulating breast cancer cells with tumorigenic and metastatic capacity
Koch C, Kuske A, Joosse S, Yigit G, Sflomos G, Thaler S, Smit D, Werner S, Borgmann K, Gärtner S, Mossahebi Mohammadi P, Battista L, Cayrefourcq L, Altmüller J, Salinas-Riester G, Raithatha K, Zibat A, Goy Y, Ott L, Bartkowiak K, Tan T, Zhou Q, Speicher M, Müller V, Gorges T, Jücker M, Thiery J, Brisken C, Riethdorf S, Alix-Panabières C, Pantel K
EMBO MOL MED. 2020;12(9):.

Modeling Spontaneous Bone Metastasis Formation of Solid Human Tumor Xenografts in Mice
Labitzky V, Baranowsky A, Maar H, Hanika S, Starzonek S, Ahlers A, Stübke K, Koziolek E, Heine M, Schäfer P, Windhorst S, Jücker M, Riecken K, Amling M, Schinke T, Schumacher U, Valentiner U, Lange T
CANCERS. 2020;12(2):.

PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer
Marquard F, Jücker M
BIOCHEM PHARMACOL. 2020;172:113729.

Characterization of the substrate specificity of the inositol 5-phosphatase SHIP1
Nelson N, Wundenberg T, Lin H, Rehbach C, Horn S, Windhorst S, Jücker M
BIOCHEM BIOPH RES CO. 2020;524(2):366-370.

Ectopic Expression of Hematopoietic SHIP1 in Human Colorectal Cancer
Schaks M, Allgoewer K, Nelson N, Ehm P, Heumann A, Ewald F, Schumacher U, Simon R, Sauter G, Jücker M
BIOMEDICINES. 2020;8(7):.

Combined Targeting of AKT and mTOR Inhibits Proliferation of Human NF1-Associated Malignant Peripheral Nerve Sheath Tumour Cells In Vitro but not in a Xenograft Mouse Model In Vivo
Schulte A, Ewald F, Spyra M, Smit D, Jiang W, Salamon J, Jücker M, Mautner V
INT J MOL SCI. 2020;21(4):.

High Sensitivity of Circulating Tumor Cells Derived from a Colorectal Cancer Patient for Dual Inhibition with AKT and mTOR Inhibitors
Smit D, Cayrefourcq L, Haider M, Hinz N, Pantel K, Alix-Panabières C, Jücker M
CELLS-BASEL. 2020;9(9):.

Differential regulation of extracellular matrix proteins in three recurrent liver metastases of a single patient with colorectal cancer
Voß H, Wurlitzer M, Smit D, Ewald F, Alawi M, Spohn M, Indenbirken D, Omidi M, David K, Juhl H, Simon R, Sauter G, Fischer L, Izbicki J, Molloy M, Nashan B, Schlüter H, Jücker M
CLIN EXP METASTAS. 2020;37(6):649-656.

2019

Analysis of the FLVR motif of SHIP1 and its importance for the protein stability of SH2 containing signaling proteins
Ehm P, Lange F, Hentschel C, Jepsen A, Glück M, Nelson N, Bettin B, de Bruyn Kops C, Kirchmair J, Nalaskowski M, Jücker M
CELL SIGNAL. 2019;63:109380.

Distinct functions of AKT isoforms in breast cancer: a comprehensive review
Hinz N, Jücker M
CELL COMMUN SIGNAL. 2019;17(1):154.

2018

Nuclear accumulation of SHIP1 mutants derived from AML patients leads to increased proliferation of leukemic cells
Nalaskowski M, Ehm P, Rehbach C, Nelson N, Täger M, Modest K, Jücker M
CELL SIGNAL. 2018;49:87-94.

2017

PTEN mediates the cross talk between breast and glial cells in brain metastases leading to rapid disease progression
Hohensee I, Chuang H, Grottke A, Werner S, Schulte A, Horn S, Lamszus K, Bartkowiak K, Witzel I, Westphal M, Matschke J, Glatzel M, Jücker M, Pukrop T, Pantel K, Wikman H
ONCOTARGET. 2017;8(4):6155-6168.

Combined inhibition of GLI and FLT3 signaling leads to effective anti-leukemic effects in human acute myeloid leukemia
Latuske E, Stamm H, Klokow M, Vohwinkel G, Muschhammer J, Bokemeyer C, Jücker M, Kebenko M, Fiedler W, Wellbrock J
ONCOTARGET. 2017;8(17):29187-29201.

SHIP1, but not an AML-derived SHIP1 mutant, suppresses myeloid leukemia growth in a xenotransplantation mouse model
Täger M, Horn S, Latuske E, Ehm P, Schaks M, Nalaskowski M, Fehse B, Fiedler W, Stocking C, Wellbrock J, Jücker M
GENE THER. 2017;24(11):749-753.

Akt1 and Akt3 but not Akt2 through interaction with DNA-PKcs stimulate proliferation and post-irradiation cell survival of K-RAS-mutated cancer cells
Toulany M, Maier J, Iida M, Rebholz S, Holler M, Grottke A, Jüker M, Wheeler D, Rothbauer U, Rodemann H
Cell death discovery. 2017;(3):17072.

Tight Junction Proteins Claudin-1 and Occludin Are Important for Cutaneous Wound Healing
Volksdorf T, Heilmann J, Eming S, Schawjinski K, Zorn-Kruppa M, Ueck C, Vidal-Y-Sy S, Windhorst S, Jücker M, Moll I, Brandner J
AM J PATHOL. 2017;187(6):1301-1312.

2016

Downregulation of AKT3 Increases Migration and Metastasis in Triple Negative Breast Cancer Cells by Upregulating S100A4
Grottke A, Ewald F, Lange T, Nörz D, Herzberger C, Bach J, Grabinski N, Gräser L, Höppner F, Nashan B, Schumacher U, Jücker M
PLOS ONE. 2016;11(1):e0146370.

Dual Targeting of Akt and mTORC1 Impairs Repair of DNA Double-Strand Breaks and Increases Radiation Sensitivity of Human Tumor Cells
Holler M, Grottke A, Mueck K, Manes J, Jücker M, Rodemann H, Toulany M
PLOS ONE. 2016;11(5):e0154745.

Akt isoform specific effects in ovarian cancer progression
Linnerth-Petrik N, Santry L, Moorehead R, Jücker M, Wootton S, Petrik J
ONCOTARGET. 2016;7(46):74820-74833.

2015

The tumor suppressor SHIP1 colocalizes in nucleolar cavities with p53 and components of PML nuclear bodies
Ehm P, Nalaskowski M, Wundenberg T, Jücker M
Nucleus. 2015;6(2):154-64.

Vertical Targeting of AKT and mTOR as Well as Dual Targeting of AKT and MEK Signaling Is Synergistic in Hepatocellular Carcinoma
Ewald F, Nörz D, Grottke A, Bach J, Herzberger C, Hofmann B, Nashan B, Jücker M
J CANCER. 2015;6(12):1195-205.

COSMC knockdown mediated aberrant O-glycosylation promotes oncogenic properties in pancreatic cancer
Hofmann B, Schlüter L, Lange P, Mercanoglu B, Ewald F, Fölster A, Picksak A, Harder S, El Gammal A, Grupp K, Güngör C, Drenckhan A, Schlüter H, Wagener C, Izbicki J, Jücker M, Bockhorn M, Wolters-Eisfeld G
MOL CANCER. 2015;14(1):109.

ErbB2 signaling activates the Hedgehog pathway via PI3K-Akt in human esophageal adenocarcinoma: Identification of novel targets for concerted therapy concepts
Kebenko M, Drenckhan A, Gros S, Jücker M, Grabinski N, Ewald F, Grottke A, Schultze A, Izbicki J, Bokemeyer C, Wellbrock J, Fiedler W
CELL SIGNAL. 2015;27(2):373-81.

Discontinuing MEK inhibitors in tumor cells with an acquired resistance increases migration and invasion
Nörz D, Grottke A, Bach J, Herzberger C, Hofmann B, Nashan B, Jücker M, Ewald F
CELL SIGNAL. 2015;27(11):2191-200.

Expression of Hedgehog Pathway Mediator GLI Represents a Negative Prognostic Marker in Human Acute Myeloid Leukemia and Its Inhibition Exerts Antileukemic Effects
Wellbrock J, Latuske E, Köhler J, Wagner K, Stamm H, Vettorazzi E, Vohwinkel G, Klokow M, Uibeleisen R, Ehm P, Riecken K, Loges S, Thol F, Schubert C, Amling M, Jücker M, Bokemeyer C, Heuser M, Krauter J, Fiedler W
CLIN CANCER RES. 2015.

Suppression of early hematogenous dissemination of human breast cancer cells to bone marrow by retinoic acid induced 2
Werner S, Brors B, Eick J, Marques E, Pogenberg V, Parret A, Kemming D, Wood A, Edgren H, Neubauer H, Streichert T, Riethdorf S, Bedi U, Baccelli I, Jücker M, Eils R, Fehm T, Trumpp A, Johnsen S, Klefstrom J, Wilmanns M, Müller V, Pantel K, Wikman-Kocher H
CANCER DISCOV. 2015;5(5):506-19.

2014

"Alkohol und Nikotin"-Konzept und Evaluation eines interdisziplinären Wahlfachs mit OSPE im Studienabschnitt Medizin 1
Bergelt C, Lauke-Wettwer H, Petersen-Ewert C, Jücker M, Bauer C
GMS J MED EDU. 2014;31(1):1-20.

H2S preconditioning of human adipose tissue-derived stem cells increases their efficacy in an in vitro model of cell therapy for simulated ischemia
Dongó E, Benkő Z, Csizmazia Á, Marosi G, Grottke A, Jücker M, Schumacher U, Kiss L
LIFE SCI. 2014;113(1-2):14-21.

Dual Inhibition of PI3K-AKT-mTOR- and RAF-MEK-ERK-signaling is synergistic in cholangiocarcinoma and reverses acquired resistance to MEK-inhibitors
Ewald F, Nörz D, Grottke A, Hofmann B, Nashan B, Jücker M
INVEST NEW DRUG. 2014;32(6):1144-54.

AKT3 regulates ErbB2, ErbB3 and estrogen receptor α expression and contributes to endocrine therapy resistance of ErbB2(+) breast tumor cells from Balb-neuT mice
Grabinski N, Möllmann K, Milde-Langosch K, Müller V, Schumacher U, Brandt B, Pantel K, Jücker M
CELL SIGNAL. 2014;26(5):1021-9.

2013

Combined targeting of AKT and mTOR using MK-2206 and RAD001 is synergistic in the treatment of cholangiocarcinoma
Ewald F, Grabinski N, Grottke A, Windhorst S, Nörz D, Carstensen L, Staufer K, Hofmann B, Diehl F, David K, Schumacher U, Nashan B, Jücker M
INT J CANCER. 2013;133(9):2065-76.

2012

Leukemia-associated mutations in SHIP1 inhibit its enzymatic activity, interaction with the GM-CSF receptor and Grb2, and its ability to inactivate PI3K/AKT signaling.
Brauer H, Strauss J, Wegner W, Müller-Tidow C, Horstmann M, Jücker M
CELL SIGNAL. 2012;24(11):2095-2101.

Combined targeting of AKT and mTOR synergistically inhibits proliferation of hepatocellular carcinoma cells.
Grabinski N, Ewald F, Hofmann B, Staufer K, Schumacher U, Nashan B, Jücker M
MOL CANCER. 2012;11:85.

Activation of PI3K/Akt signaling by n-terminal SH2 domain mutants of the p85α regulatory subunit of PI3K is enhanced by deletion of its c-terminal SH2 domain.
Hofmann B, Jücker M
CELL SIGNAL. 2012;24(10):1950-1954.

The inositol 5-phosphatase SHIP1 is a nucleo-cytoplasmic shuttling protein and enzymatically active in cell nuclei.
Nalaskowski M, Metzner A, Brehm M, Labiadh S, Brauer H, Grabinski N, Mayr G, Jücker M
CELL SIGNAL. 2012;24(3):621-628.

2011

Distinct functional roles of Akt isoforms for proliferation, survival, migration and EGF-mediated signalling in lung cancer derived disseminated tumor cells
Grabinski N, Bartkowiak K, Grupp K, Brandt B, Pantel K, Jücker M
CELL SIGNAL. 2011;23(12):1952-1960.

Posttranscriptional regulation of the p85 adapter subunit of phosphatidylinositol 3-kinase in human leukemia cells.
Hofmann B, Hoxha E, Mohr E, Schulz K, Jücker M
LEUKEMIA LYMPHOMA. 2011;52(3):467-477.

Posttranscriptional regulation of the p85α adapter subunit of phosphatidylinositol 3-kinase in human leukemia cells
Hofmann B, Hoxha E, Mohr E, Schulz K, Jücker M
LEUKEMIA LYMPHOMA. 2011;52(3):467-77.

2009

Reduced proliferation of CD34(+) cells from patients with acute myeloid leukemia after gene transfer of INPP5D.
Metzner A, Precht C, Fehse B, Fiedler W, Stocking C, Günther A, Mayr G, Jücker M
GENE THER. 2009;16(4):570-573.

2008

Mutations in the catalytic subunit of class IA PI3K confer leukemogenic potential to hematopoietic cells.
Horn S, Bergholz U, Jücker M, McCubrey J, Trümper L, Stocking C, Bäsecke J
ONCOGENE. 2008;27(29):4096-4106.

2007

Gene transfer of SHIP-1 inhibits proliferation of juvenile myelomonocytic leukemia cells carrying KRAS2 or PTPN11 mutations.
Metzner A, Horstmann M, Fehse B, Ortmeyer G, Niemeyer C, Stocking C, Mayr G, Jücker M
GENE THER. 2007;14(8):699-703.

2003

An increase in the expression and total activity of endogenous p60(c-Src) in several factor-independent mutants of a human GM-CSF-dependent leukemia cell line (TF-1)
Horn S, Meyer J, Stocking C, Ostertag W, Jücker M
ONCOGENE. 2003;22(46):7170-80.

2002

Hierarchy of stroma-derived factors in supporting growth of stroma-dependent hemopoietic cells membrane-bound SCF is sufficient to confer stroma competence to epithelial cells
Friel J, Itoh K, Bergholz U, Jücker M, Stocking C, Harrison P, Ostertag W
Growth factors (Chur, Switzerland). 2002;20(1):35-51.

1996

Expression of the neural adhesion molecule L1 in the deafferented dentate gyrus
Jucker M, D'Amato F, Mondadori C, Mohajeri H, Magyar J, Bartsch U, Schachner M
NEUROSCIENCE. 1996;75(3):703-15.

Letzte Aktualisierung aus dem FIS: 05.10.2022 - 00:33 Uhr