PTMs in Krankheit und Infektion

Das Verständnis der molekularen Prozesse des Lebens erfordert das Verständnis von Proteinen: Fast jeder biologische Prozess beinhaltet die Beteiligung dieser Biomoleküle. Es ist daher nicht verwunderlich, dass detaillierte Untersuchungen von Proteinen auf molekularer Ebene fundamentale Einblicke in die Biochemie und Zellbiologie des Menschen geliefert haben. Unsere Gruppe ist daran interessiert, die Biochemie und Struktur von Proteinen unter dem Einfluss von Interaktionspartnern zu untersuchen. Insbesondere der Beitrag posttranslationaler Modifikationen zur Regulation der Proteinaktivität ist ein zentrales Forschungsthema in unserem Labor. In dieser Hinsicht ist es interessant, den Einfluss pathogener Bakterien auf die Funktion und Aktivität von menschlichen Proteinen zu betrachten: Diese Krankheitserreger haben im Laufe der Evolution faszinierende Mechanismen entwickelt, um die infizierten menschlichen Zellen durch Modulation der Aktivität von Schlüsselproteinen manipulieren zu können, z.B. durch Anbringung von posttranslationalen Modifikationen. Das Studium der molekularen Grundlagen solcher Manipulationsprozesse ermöglicht es uns, Strategien von Krankheitserregern zu identifizieren und zu beschreiben.

PTMs in Kontext von Krankheit und Infektion

Etliche bakterielle Krankheitserreger haben im Laufe der Evolution ausgeklügelte Strategien entwickelt, um ihrer Beseitigung durch das menschliche Immunsystem entkommen zu können. Zu diesem Zweck setzen sie während eines Infektionsprozesses eine Vielzahl bakterieller Proteine frei, welche in essentielle intrazelluläre Vorgänge in der Wirtszelle eingreifen und damit das Überleben des Eindringlings garantieren. Unser Ziel ist es, die zugrundeliegenden Mechanismen der Manipulation menschlicher Proteine anhand ausgewählter bakterieller Faktoren im molekularen Detail zu verstehen. Zu diesem Zweck isolieren wir die gewünschten bakteriellen Proteine in hoher Reinheit, sodass wir anschließend deren biochemischen und funktionellen Eigenschaften mittels biophysikalischer und strukturbiologischer Methoden studieren können.

Ein Fokus unserer Arbeit liegt aktuell auf der Erforschung von posttranslationalen Modifikationen (PTMs), die im Kontext bakterieller Krankheitserreger auftreten. Posttranslationale Modifikationen sind dabei chemische Veränderungen an Proteinen, die durch Enzyme hervorgerufen werden. Diese Umformungen beeinflussen die Aktivität und Funktionalität der modifizierten Proteine signifikant. Daher setzen viele Pathogene Enzyme frei, die selektiv und spezifisch zentrale Faktoren menschlicher Zellen modifizieren um damit dem Krankheitserreger einen Vorteil zu verschaffen.

Besonders für uns interessant unter den posttranslationalen Modifikationen ist die sogenannte AMPylierung von menschlichen Proteinen. Viele bakterielle Krankheitserreger injizieren Enzyme in Wirtszellen, die das allgemeine verfügbare Adenosintriphosphat (ATP) verwenden und damit Zielproteine mit einem Adenosinmonophosphat (AMP) verknüpfen. Mittlerweile wissen wir, dass die AMP-übertragenden Enzyme in vielen bakteriellen Krankheitserregern vorhanden sind, deren Zielproteine können allerdings nicht vorhergesagt werden.

Daher ist ein zentrales Thema unserer Arbeit die Entwicklung von Methoden, mit deren Hilfe AMP-modifizierte Proteine identifiziert werden können. Hierfür verwenden wir ein Spektrum an biochemischen, chemischen, massenspektrometrischen und immunologischen Verfahren, welche die gezielte Anreicherung und Analyse von AMPylierten Molekülen ermöglicht. Aber auch andere PTMs (Phosphocholinierung, Phosphorylierung, Proteolyse) sind Gegenstand unserer Forschung

Darüber hinaus möchten wir die biochemischen, funktionellen und strukturellen Konsequenzen von PTMs im Kontext bakterieller Infektionen im molekularen Detail verstehen. Die Einbringung und Analyse von PTMs (z.B. AMPylierungen) sind technisch herausfordernd und benötigen umfangreiche Kenntnisse zur Biochemie und Funktionsweise der jeweiligen Proteine und Enzyme. Eine Kernexpertise unserer Gruppe ist daher die Generierung von Proteinen, die Einführung der PTMs, sowie die umfassende Charakterisierung dieser Moleküle. Unser Forschungsansatz ermöglicht es uns, Angriffspunkte von Bakterien identifizieren und deren mögliche zelluläre Konsequenzen studieren zu können.

Methodische Expertise

  • Expression und Produktion gereinigter Proteine
  • Biophysikalische Charakterisierung von Proteinen
  • Entwicklung enzymatischer Testverfahren

Methodenspektrum

  • Molekularbiologie für pro- und eukaryotische Systeme, wachsende Datenbank von über 8000 Plasmiden
  • Rekombinante Proteinexpression in E.coli und Hefe
  • Herstellung reiner Proteine mittels chromatografischer Verfahren im Multi-Milligram Maßstab (Affinitäts- und Größenausschlusschromatografie, Chromatografiesysteme, proteolytischer Verdau)
  • Massenspektrometrische Analyse intakter rekombinanter Proteine
  • Biophysikalische Charakterisierung von Proteinen und Proteininteraktionen (Fluoreszenzspektrometrie, Fluoreszenzanisotropie, Fluoreszenztritration, isothermale Titrationskalorimetrie, Thermophorese, Biolayer Interferometry, CD, TSA)
  • Proteinkristallisation und Strukturbestimmung mittels Röntgenkristallographie
  • Interaktionsanalyse von Proteinen mittels Hefe-2-Hybrid-Ansätzen, analytischer Größenausschlusschromatographie, Affinitätsstudien
  • Immunologische Nachweistechniken (z.B. Western-Blotting)
  • Etablierung von Enzymkinetiken (basierend auf Fluoreszenzmethoden, Massenspektrometrie, quantifizierende Western-Blot- und chromatografische Verfahren)
  • Eukaryotische Zellkultur (Hela, CHO, THP1, HEK293) in Verbindung mit Fluoreszenzmikroskopie
  • Etablierung neuer Nachweis- und Anreicherungsverfahren für posttranslationale Modifikationen (Generierung und Anwendung spezifischer Antikörper, Anwendung neuer chemischer Konzepte)
  • Stabilisierung, Präparation und Charakterisierung schwach-affiner Proteinkomplexe