Research activities

Lucie Carrier received her PhD in 1989 at Grenoble University and her Habilitation (HDR) in 2000 at Paris 6 University. She is Director of Research CNRS since 2002 and Professor of “Functional Genomics of Cardiomyopathies” at the UKE since 2011 in the Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center. The Research focus of Carrier’s group is “Genetics, Pathophysiology and Therapy” of both the adult forms and pediatric forms of hypertrophic cardiomyopathy (HCM). HCM is a myocardial disease with the major features of left ventricular hypertrophy, diastolic dysfunction and increased interstitial fibrosis. HCM is the most prevalent monogenic cardiac disease with an estimated prevalence of 1:500 in young adults. It is the major cause of sudden death in the young and is associated with a significant risk of heart failure. It is an autosomal-dominant familial disease in most of the cases and involves more than 1000 mutations in at least 13 different genes encoding proteins of the sarcomere. The most frequently mutated gene is MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C), component of the cardiac sarcomere and is in the heart of our projects. In the last decade, increasing literature revealed that homozygous or compound heterozygous truncating mutations in MYBPC3 cause neonatal forms of HCM, which rapidly evolves into systolic heart failure and death within the first year of life. Back to working groups...

Major scientific findings

Genetics of HCM

  • Identification of the CMH4 locus on chromosome 11 (Carrier, Hensgtenberg et al., Nat Genet 1993)
  • Identification of the HCM disease gene MYBPC3 encoding cardiac myosin-binding protein C cMyBP-C; Bonne, Carrier et al., Nat Genet 1995)
  • Determination of the complete structure and organization of the MYBPC3 gene and demonstration that most of the MYBPC3 mutations produce C-terminal truncated proteins (Carrier et al., Circ Res 1997)
  • Evidence that MYH7 and MYBPC3 are the two most frequently mutated genes in HCM and that 5% of individuals with a complex genetic status who exhibit a more severe phenotype (Richard et al., Circulation 2003)
  • Identification of a polymorphism in calmodulin III promoter that modifies the expression of HCM (Friedrich et al., Eur Heart J 2009)
  • Identification of FHL1 and FHL2 as new disease genes for isolated HCM (Friedrich et al., Hum Mol Genet 2012; Friedrich et al., Basic Res Cardiol 2014).
Pathophysiology of HCM

  • MYBPC3 is expressed exclusively in the heart during human and mouse development (Fougerousse et al, Circ Res 1998)
  • Human truncated cMyBP-C mutants are unstable and mis-incorporated in fetal rat cardiomyocytes (Flavigny et al., J Mol Biol 1999)
  • Heterozygous Mybpc3-targeted knock-out mice develop asymmetric septal hypertrophy, therefore constituting the first model with the major feature of HCM (Carrier, Knöll et al, Cardiovasc Res 2004)
  • Human homozygous R403W mutant cardiac myosin presents disproportionate enhancement of mechanical and enzymatic properties (Keller et al., J Mol Cell Cardiol 2004)
  • cMyBP-C is required for complete relaxation in diastole (Pohlmann et al., Circ Res 2007)
  • Truncated cMyBP-C mutants impair the ubiquitin-proteasome system after gene transfer in cardiomyocytes (Sarikas, Carrier et al., 2005)
  • The E3 ubiquitin ligase Atrogin-1 degrades truncated cMyBP-C but MuRF1 down-regulates the transcription of myosin-heavy chains (Mearini et al., Cardiovasc Res 2010)
  • The nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate the levels of cMyBP-C in targeted Mybpc3-targeted knock-in mice (Vignier*, Schlossarek* et al., 2009)
  • Diastolic dysfunction is the early consequence of the mutation in heterozygous Mybpc3-targeted knock-in mice without hypertrophy (Fraysse*, Weinberger*, Bardswell* et al., J Mol Cell Cardiol 2012)
  • Adrenergic stress revealed UPS impairment in heterozygous Mybpc3-targeted knock-in mice (Schlossarek et al., J Muscle Res Cell Motil 2012)
  • Evidence for impairment of proteolytic systems with aging in mice with cardiomyopathies (Schlossarek et al., Basic Res Cardiol 2012).
  • The E3 ubiquitin ligase Asb2b targets desmin for proteasomal degradation (Thottakara et al., J Mol Cell Cardiol 2015)

Therapy of HCM

  • RNA-based 5’ trans-splicing repairs mutant Mybpc3 mRNA in HCM mice (Mearini, Stimpel et al., Mol Therapy – Nucl Acids 2013)
  • U7snRNA-mediated exon skipping rescues cardiomyopathy in HCM mice (Gedicke-Hornung, Behrens-Gawlik et al., EMBO Mol Med 2013)
  • Proteasome inhibition slightly improves cardiac function in HCM mice (Schlossarek et al., Frontiers Physiol 2014)
  • AAV9-mediated Mybpc3 gene therapy long-term prevents the cardiac disease phenotype in a mouse model that genetically mimics severe forms of pediatric cardiomyopathies (Mearini, Stimpel et al., Nat Commun 2014).
  • Ranolazine improved tolerance to high workload in mouse HCM cardiomyocytes by antagonizing b-adrenergic stimulation (Flenner, Friedrich et al., Cardiovasc Res 2015)

Current scientific objectives

  • Understanding the molecular mechanisms by which mutations in MYBPC3 and ACTN2 lead to HCM using human induced-pluripotent stem cells (iPSC)-derived cardiomyocytes and engineered heart tissue, CRISPR/Cas9 gene editing and other molecular therapies.
  • Understanding the role of cMyBP-C in the autophagy-lysosomal pathway
  • Understanding the role of protein quality controls (ubiquitin-proteasome system, autophagy-lysosomal pathway and unfolded-protein response) in cardiac homeostasis, HCM and DCM.
  • Evaluation of myofilament Ca2+ sensitivity in skinned muscle strips from HCM patients
  • Evaluation of arrhythmias and alteration of action potential in cardiac muscle strips of HCM mice and patients.
  • Evaluation of MYBPC3 gene therapy in larger HCM models.

Current material and methods

  • Transgenic mice: (1) Mybpc3-targeted knock-out, (2) Mybpc3-targeted knock-in (point mutation leading to 3 different mutant mRNAs and/or proteins), (3) Mybpc3-M7t transgenic (truncated protein), (4) UbG76V-GFP and GFPdgn transgenic mice as UPS-reporters in vivo, (5) MuRF1-KO mice (ubiquitin E3 ligase), (6) Nbr1-KO mice, (7) GFP-LC3 mice, (8) MuRF1-KO mice.
  • Adenovirus encoding wild-type cMyBP-C, different truncated cMyBP-C mutants, atrogin-1, MuRF1, UbG76V-dsRed, ASB2b.
  • Adeno-associated virus encoding components of the cardiac sarcomere and GFP-LC3.
  • DNA bank of >350 unrelated patients with hypertrophic cardiomyopathy (EUROGENE Heart Failure Project; LeDucq Foundation)
  • Mouse cardiac physiology (Echocardiography, measurement of cell and sarcomere length shortening and Ca2+ transient in adult mouse myocytes with the IonOptix system, measurements of cardiac muscle contractility, measurements of force-calcium relationships in skinned muscle preparations with the AURORA system)
  • Cell biology and biochemistry (isolation and culture of neonatal and adult mouse cardiac myocytes, fluorescence and confocal microscopy, proteasome activities, immuno-precipitation…)
  • Molecular biology (DNA and RNA extractions, production of recombinant proteins, PCR, RT-PCR, qPCR on Taqman, Western blot analysis…
  • Stable HEK 293 cell line that expresses the tandem fluorescent-tagged LC3 (RFP-GFP-LC3)
  • Stable HEK 293 cell line expressing fluorescent UPS and ALP reporters in tandem
  • Human induced pluripotent stem cells (iPSC) from HCM patients
  • CRISPR/Cas9 gene editing
  • iPSC-derived cardiomyocytes and engineered heart tissue

Current collaborations

UKE

Ingke Braren, UKE-HEXT-AAV, Hamburg

Sandra Laufer and Aya Shibamiya, UKE-HEXT-Stem cells, Hamburg

Monica Patten, Julia Münch, Tanja Zeller, Stefan Blankenberg, Cardiology, UKE

Germany

Zouhair Aherrahrou and Jeanette Erdmann, University of Lübeck

Johannes Backs, Cardiology, University of Heidelberg

Stefan Engelhardt, Pharmacology, TUM, Munich

Norbert Hübner, MDC, Berlin Sabine Klaassen, MDC and Charité, Berlin

Stephanie Könemann, University Medicine Greifswald

Markus Krüger, University of Köln. Christian Kupatt and Rabea Hinkel, TUM and LMU, Munich Oliver Müller, Cardiology, University of Heidelberg

Ole Pless, Fraunhofer IME, Hamburg

Angelika Schnieke, TUM, Munich

Thomas Thum, MHH, Hannover

Europe

Gisèle Bonne, UPMC - Inserm UMRS 974, CNRS FRE3617, Paris, France

Mathias Gautel, King’s College, London, UK

Corrado Poggesi, University of Florence, Italy

Thomas Voit, Biomedical Research Centre, Institute of Child Health and Great Ormond Street Hospital Trust, London, UK

Charles Redwood, University of Oxford, UK

Marco Sandri, University of Padova, Italy

Jolanda van der Velden, VUMC, Amsterdam, The Netherlands

USA

Jeffrey Robbins, Children’s Hospital, Cincinnati, OH, USA

Monte Willis, Carolina Cardiovascular Biology Center, Chapel Hill, NC, USA

Joseph Hill, UT Southwest Medical Center, Dallas, TX, USA

Current funding

(1) Leducq Foundation (Research grant Nr. 11, CVD 04), 2012-2016: Proteotoxicity: an unappreciated mechanism of heart disease and its potential for novel therapeutics (coordinators J. Robbins, Cincinnati, OH & M. Gautel, London, UK; principal Investigator L. Carrier)

(2) DZHK (Deutsches Zentrum für Herz-Kreislaufforschung - German Centre for Cardiovascular Research), 2015-2018: Hypertrophic cardiomyopathy: from gene identification to individualized therapy (coordinator T. Eschenhagen, Hamburg; principal investigator L. Carrier), plus several collaborative projects within the DZHK.

Selected publications (out of >128; in bold from UKE)

(1) Pohlmann L, Kröger I, Vignier N, Schlossarek S, Krämer L, Coirault, C, Sultan KR, El-Armouche A, Winegrad, S, Eschenhagen T, Carrier L (2007) Cardiac myosin-binding protein C is required for complete relaxation in intact myocytes. Circ Res 101:928-938.

(2) El-Armouche A, Pohlmann L, Schlossarek S, Starbatty J, Nattel S, Dobrev D, Eschenhagen T, Carrier L (2007) Decreased phosphorylation levels of cardiac myosin-binding protein C in human and experimental heart failure. J Mol Cell Cardiol 43:223-229.

(3) Friedrich FW, Bausero P, Sun Y, Treszl A, Kraemer E, Juhr D, Richard P, Wegscheider K, Schwartz K, Brito D, Arbustini E, Waldenström A, Isnard R, Komajda M, Eschenhagen T, Carrier L (2009) A new polymorphism in human calmodulin III gene promoter is a potential modifier gene for familial hypertrophic cardiomyopathy. Eur Heart J 30:1648-55.

(4) Vignier N*, Schlossarek S*, Fraysse B, Mearini G, Krämer E, Pointu H, Mougenot N, Guiard J, Reimer R, Hohenberg H, Schwartz K, Vernet M, Eschenhagen T, Carrier L (2009) Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cMyBP-C mutant levels in cardiomyopathic mice. Circ Res 105:239-248.

(5) Mearini G, Gedicke C, Schlossarek S, Witt, CC, Krämer E, Cao P, Gomes MD, Lecker SH, Labeit S, Willis MS, Eschenhagen T, Carrier L (2010) Atrogin-1 and MuRF1 regulate cMyBP-C levels via different mechanisms. Cardiovasc Res 85:357-366.

(6) Schlossarek S, Englmann D, Sultan K, Sauer M, Eschenhagen T, Carrier L (2012) Defective proteolytic systems in Mybpc3-targeted mice with cardiac hypertrophy. Basic Res Cardiol 107:1-13.

(7) Schlossarek S, Schuermann F, Mearini G, Geertz B, Eschenhagen T, Carrier L (2012) Adrenergic stress reveals septal hypertrophy and proteasome impairment in heterozygous Mybpc3-targeted knock-in mice. J Muscle Res Cell Motil 33:5-15.

(8) Fraysse B*, Weinberger F*, Bardswell S*, Cuello F, Vignier N, Geertz B, Starbatty J, Krämer E, Coirault C, Eschenhagen T, Kentish JC, Avkiran M, Carrier L (2012) Increased myofilament Ca2+ sensitivity and diastolic dysfunction as early consequences of Mybpc3 mutation in heterozygous knock-in mice. *contributed equally. J Mol Cell Cardiol 52:1299-1307.

(9) Friedrich FW, Wilding BR, Reischmann S, Crocini C, Lang P, Charron P, Müller OJ, McGrath MJ, Vollert I, Hansen A, Linke WA, Hengstenberg C, Bonne G, Morner S, Wichter T, Madeira H, Arbustini E, Eschenhagen T, Mitchell CA, Isnard R, Carrier L (2012) Evidence for FHL1 as a novel disease gene for isolated hypertrophic cardiomyopathy. Hum Mol Genet 21: 3237-3254.

(10) Friedrich FW, Dilanian G, Khattar P, Juhr D, Gueneau L, Charron P, Fressart V, Vilquin JT, Isnard R, Gouya L, Richard P, Hammoudi N, Komajda M, Bonne G, Eschenhagen T, Dubourg O, Villard E, Carrier L (2013) A novel genetic variant in the transcription factor ISL1 exerts gain-of-function on Mef2c promoter activity. Eur J Heart Fail 15:267-276.

(11) Crocini C*, Arimura T*, Reischmann S, Eder A, Braren I, Naito H, Hansen A, Eschenhagen T, Kimura A*, Carrier L* (2013) Impact of ANKRD1 mutations associated with hypertrophic cardiomyopathy on cardiac contraction.*Contributed equally. Basic Res Cardiol 108:349-360.

(12) Gedicke-Hornung C*, Behrens-Gawlik V*, Reischmann S, Geertz B, Stimpel D, Weinberger F, Schlossarek S, Précigout G, Braren I, Eschenhagen T, Mearini G, Lorain S, Voit T, Dreyfus PA, Garcia L, Carrier L (2013) Rescue of cardiomyopathy through U7snRNA-mediated exon skipping in Mybpc3-targeted knock-in mice. *Contributed equally. EMBO Mol Med 5:1060-1077.

(13) Mearini G*, Stimpel D*, Krämer E, Geertz B, Braren I, Gedicke-Hornung C, Précigout G, Müller OJ, Katus HA, Eschenhagen T, Voit T, Garcia L, Lorain S, Carrier L (2013) Repair of Mybpc3 mRNA by 5´-trans-splicing in a mouse model of hypertrophic cardiomyopathy. *Contributed equally. Mol Ther Nucleic Acids 2013 Jul 2;2:e102. doi: 10.1038/mtna.2013.31.

(14) Friedrich FW, Reischmann S, Schwalm A, Unger A, Ramanujam D, Münch J, Müller OM, Hengstenberg C, Galve E, Charron P, Linke WA, Engelhardt S, Patten M, Richard P, van der Velden J, Eschenhagen T, Isnard R, Carrier L (2014) FHL2 expression and variants in hypertrophic cardiomyopathy. Basic Res Cardiol 109:451. DOI: 10.1008/s00395-014-0451-8.

(15) Mearini G*, Stimpel D*, Geertz B, Weinberger F, Krämer E, Schlossarek S, Mourot-Filiatre J, Stöhr A, Dutsch A, Wijnker PJM, Braren I, Katus HA, Müller OJ, Voit T, Eschenhagen T, Carrier L (2014) Mybpc3 gene therapy for neonatal cardiomyopathy enables longterm disease prevention in mice. *Contributed equally. Nat Commun 5:5155. Doi: 10.1038/ncomms6515.

(16) Schlossarek S, Singh S, Geertz B, Schulz H, Reischmann S, Hübner N, Carrier L (2014) Proteasome inhibition partially rescues the disease phenotype in mice with hypertrophic cardiomyopathy. Front Physiol Dec 16;5:484.

(17) Thottakara T, Friedrich FW, Reischmann S, Braumann S, Krämer E, Juhr D, Schlüter H, Lutz P, Eschenhagen T, Moog-Lutz C, Carrier L (2015) The E3 ubiquitin ligase Asb2β is downregulated in a mouse model of hypertrophic cardiomyopathy and targets desmin for proteasomal degradation. J Mol Cell Cardiol 87:214-224.

(18) Flenner F, Friedrich FW, Ungeheuer N, Christ T, Geertz B, Reischmann S, Wagner S, Stathopoulou K, Söhren K, Weinberger F, Schwedhelm E, Cuello F, Maier L, Eschenhagen T, Carrier L (2015) Ranolazine antagonizes catecholamine-induced dysfunction in isolated cardiomyocytes, but lacks long-term therapeutic effects in vivo in a mouse model of hypertrophic cardiomyopathy. Cardiovasc Res, in press

Selected reviews

(1) Mearini G, Schlossarek S, Willis M, Carrier L (2008) The ubiquitin-proteasome system in cardiac dysfunction. Biochem Biophys Acta 1782:749-763.

(2) Carrier L, Schlossarek S, Willis M, Eschenhagen T (2010) Ubiquitin-proteasome system and nonsense-mediated mRNA decay in hypertrophic cardiomyopathy. Cardiovasc Res 85:230-238.

(3) Schlossarek S, Mearini G, Carrier L (2011) Cardiac myosin-binding protein C in hypertrophic cardiomyopathy: mechanisms and therapeutic opportunities. J Mol Cell Cardiol 50:613-620.

(4) Schlossarek S, Carrier L (2011) The ubiquitin-proteasome system in cardiomyopathies. Curr Opin Cardiol 26: 190-195.

(5) Marston S, Copeland O’Neal, Gehmlich K, Schlossarek S, Carrier L (2012) How do MYBPC3 mutations cause hypertrophic cardiomyopathy? J Muscle Res Cell Motil 33:75-80.

(6) Friedrich FW, Carrier L (2012) Genetics of hypertrophic and dilated cardiomyopathy. Curr Pharm Biotechnol 13, 2467-2476.

(7) Schlossarek S, Frey N, Carrier L (2014) Ubiquitin-proteasome system and hereditary cardiomyoapthies. J Mol Cell Cardiol 71:25-31

(8) Behrens-Gawlik V, Mearini G, Gedicke-Hornung C, Richard P, Carrier L (2014) MYBPC3 in hypertrophic cardiomyopathy: from mutation identification to RNA-based correction. Pflugers Arch – Eur J Phyiol 466:215–223.

(9) Carrier L, Mearini G, Stathopoulou K, Cuello F (2015) Cardiac myosin-binding protein C (MYBPC3) in cardiac pathophysiology. Gene 573:188-197