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Genomics
Applications for Neuro-Oncology

Gene Mutation Patterns Gene Expression (mRNA)

Adult gliomas Padiatric gliomas
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Figure 1. Gene expression heatmap and overall survival of WHO grade Wl glioma patients. Map of the gene expression levels from the
27-gene list used to generate a classification clearly identifying a high risk cluster containing most of the deceased patients of the training cohort.
doiz10.1371/journal pone. 0066574.g001

Reme T, PLoS ONE 2013, 8(6): e66574.



Radiomics: Feature description

A Tumor slice ‘ B Tumor region ‘ C LBP descriptor D HOG descriptor E SIFT descriptor

FIG 1. Visualization of computational image feature descriptors. A Tl-weighted brain tumor section (A and B) is displayed, and feature
visualizations (C—E) are given of LBP (C), HOG (D), and SIFT (E) descriptors. LBP quantifies local pixel structures through a binary coding scheme.
HOG computes block-wise histogram gradients with multiple orientations. SIFT detects distributed key points with radius on tumor images.
These multiparametric features create a rich image-driven data base to characterize tumors in MR imaging at different scales.

LBP: Local Binary Patterns
HOG: Histogram of Oriented Gradients
SIFT: Scale Invariant Feature Transform

Radiomics in Brain Tumor: Image Assessment, Quantitative
Feature Descriptors, and Machine-Learning Approaches

Wi, Zheu, W), Scom, S, Chaudhury, 'L Hall, 0 Goldgof, SIwW. veom, SR v, 9y Ou, B Kalpathy-Cramar, 'S, Magped,
" Galles, O G aerT, @l = R Gatsnby

AJME Am ) Meuroradicl @@ @ 20158



Radiomics

Applications for Neuro-Oncology

Microscopical and molecular Radiomics :
tumor characteristics : - General tumor features:
- Cell type - Histogram
- Receptor expression - Texture
- Invasion pattern = TTTTTTTTTTTTTTTTTTTTTT > - Shape
- Angiogenesis -Local image feature maps
- Gene mutations
IMAGES + SOFTWARE
TISSUE + PATHOLOGIST Lo
7 Y;
Treatment planning : Py
- Surgery (Extent of resection) &’ ,"
- Radiotherapy (Segmentation, Dose) ,"
- Systemic therapy ,,"
/
determine Clinical outcome : ¢/l

- Final diagnosis
- Response to therapy (prediction)
- Prognosis (DFS, OS)



Radiomics
Applications for Neuro-Oncology

Prediction of clinical outcome

Non-invasive determination of molecular
biomarkers

Tumor segmentation

Differentiation of recurrence from
radionecrosis
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Radiomics based on Feature Description:
Typical Workflow

Manual segmentation of tumor
(and compartments)

Preprocessing
(filterung etc.)

Feature computation/
extraction

Model building (classification)
using clinical or genomic data

Validation of the model
using independent data set
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Figure 1;

Imaga postprocessing workfiow is showm. Tumors have diffarent shapes and levels of intansity, a5 shown on representative images. On Ish images,
fumor sagmentations are red, with the volume-réndered thres-dimensional (300} segmentations on the night. Workflow from tumer segmentation o statistical anabysis
iz shawn in order fleft o righty. /= Segmentation of contrast-enhancing {red mask) and nonenhancing (blue mask) twmor wolums on coregisterad, brain-extracted
Tt-weighted subbaction |2ubT1) and FLAIR volume images. J = image mlansity levels ara nomalired into common peramster space that alloves refarancing amang
differant subjects. i = Multole radiomic fsatures are aufomstically cafculated from intersisy-normalized contrast-enhanced T1-weighted and FLAIR vwolume imaiges
by izzing thrie-cgimensonsd sagmentations including first-order, volurme and shape, and texdure faatures. in addbon, thres-dmensional wavelst dacompostion =
performed on anginal /mages and dacomposad images subjected %o the same teshure exiraction routse. IV = Larga number of radiomac festure paramaters & than
subjected to SPC analyss for deserminasion of suitable parameters for survival stratification

Radiology: \lolume 280: Number 3—September 2016
Philipp Kickingereder, MD




Radiomics: Feature extraction and Model building
using CNN (Convolutional Neural Networks)

ol *
Pooling O Survival outcome
l . O prediction
Imaging dato R w | ||| -0 ‘ O I Treatment response
O prediction
O .
Convolutional layer2 O s
Clinical feature Convolutional layer1 : .
Molecular feature * Tumor segmentation
Histological feature O 4 J
Treatment information

Fully collected layer

FIG 3. lllustration of the convolutional neural networks model using imaging and other biomedical data for brain tumor analysis. The convo-
lutional neural networks model consists of multiple convolutional layers, pooling layers, and fully connected layers to learn an abstraction of the
input data, such as imaging and clinical features for a variety of outcome evaluations.

Radiomics in Brain Tumor: Image Assessment, Quantitative
Feature Descriptors, and Machine-Learning Approaches
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Radiomics: Feature Maps

Features from convl Features from conv2 Featres from conv3
_ Wild_’[’yp? Mutation Wild Typc_ M_utation . Wild Type Mutation _
E? “ A | DN | SN Deep Learning based Radiomics
Motcon f’ e - ; (DLR) and its usage in noninvasive
T2flair e IDH1 prediction for low grade
glioma
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Figure 4. Feature maps of CNN features from different convolutional layers. The four most significant filter
banks of different layers were selected. As shown in the figures, feature maps of deeper layers represented more
detailed characteristics.



Radiomics for Survival prediction in GBM
based on tumor region

Radiomic Profiling of
Glioblastoma: [deniifying an
Imaging Predictor of Patient Survival
with Improved Performance over
Established Clinical and Radiologic
Risk Models'

Radiology: \lolume 280: Number 3—September 2016
Philipp Kickingereder, MD
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Radiomics for Survival prediction in GBM:
based on peritumoral parenchyma

Radiomic features from the peritumoral brain parenchyma

on treatment-naive multi-parametric MR imaging predict long
versus short-term survival in glioblastoma multiforme:
Preliminary findings Eur Radiol (2017) 27:4188-4197
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Table4  Five ofthe most predictive radiomic features from peritumoral
brain zone (PBZ) across the three magnetic resonance (MRB) sequences
gadolmum ( Gdeontmast T, T,,, and FLAIR, as well a5 across the multi-
parametric sel Note that WSWS represents u lows feature that caplures
wave pattems in an image using a 5 = 5 filter. Similarly, R5RS represents
a laws feature that captures npple patterns, 5355 captures spot patterns,
while ESES captures the edge pattems in an image
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Radiomics for survival prediction in GBM:

N train. | MRI Primary Selection Final Classification Tumor Prediction accuracy
/valid. methods feature method feature method subregions (valid. set if available)
set
Lee 65/0 T1-CE, 36 CoV 5 Symbolic all subregions  p =0.00021
(2015) FLAIR (habitats) Regression 0S</>12m
McGarry 81/0 T1/CE, 81 Kaplan-Maier/ 5 Score CE-region p < 0.005
(2016) DWI, FLAIR (intensity)  log rank test (vol. threshold)  (T1-CE) median OS 25m vs. 8m
Kickingereder 79/ 40 T1/CE, 12190 Supervised PCA 11 Radiomics CE-region p < 0.004
(2016) DWI, FLAIR Score (FLAIR) HR 3.45
Prasanna 65/0 T1-CE, T2, 3x 402 MRMR 10 Random peritumoral p <0.0001
(2017) FLAIR Forest OS<7myvs. > 18m
Lao 75 /37 T1/CE, T2, 98304 CNN-S, C-Index, 6 Score mainly tumor  p <0.001
(2017) FLAIR LASSO (linear comb.) core HR =5.13
Li (2017) 60/ 32 T1/CE, T2, 45792 OCCC, C-index, 4 Score all subregions p <0.004
FLAIR LASSO HR =3.29

Abrevatations:

PCA:  Principal Component Analysis

MRMR: minimum Redundancy Maximum Relevance
CoV: Coefficient of Variation

CNN: Convolutional Neural Network

ROC: Receiver Operator Characteristics

SVM: Support Vector Machine

OCCC: Overall Concordance Correlation Coefficient



Radiomics for prediction of IDH1 mutation in glioma

Fig. 4 Representative cases o show shape and texture differences
herween different isocitrate dehvdrogenase | (IDH1) states. (a)

Representative shapes, (b) representative texture features, First row of

(a} and (b} two tvpical cases in an IDH| mutation group; second row
of (a) and (b): two tvpical cases i a wild-type group

Noninvasive IDH1 mutation estimation based on a quantitative

radiomics approach for grade Il glioma
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MR radiomics for determination of IDH1/2
mutations in glioma

Tumor type MRI N Primary | Selection Final Classification Diagnostic accuracy
Biomarker methods train/valid feature | method feature method (valid. Set
set set if available)
Zhou WHO II T1/CE, T2, 165/0 4x 42 ROC 3 Multivariate 77% (estim.)
(2017)  IDHmut/wt FLAIR Logistic
75% [/ 25% regression
Yu WHO Il FLAIR 110/ 30 671 mRMR 110 SVM 83%
(2016)  IDH mut / wt
71% [ 29%
Li WHO Il T1/CE, 60 /59 16384 CNN (segm.) 494 SVM 91%
(2017) IDHmut/wt FLAIR Fisher vector
74% [ 26% t-test, F-score
Eiching  WHO II/Ill T2, DTI 59/20 101 none 101 Neural Network 95%
er IDH mut / wt (LBP) (single layer)
(2017)  75%/25%
Zhang WHO IIl/1V T1/CE, T2, 90/ 30 2970 ROC, 386 Random Forest 89%
(2017) IDHmut/wt  FLAIR, DWI Redundancy
45% / 55% reduction

Abrevatations:

MRMR: minimum Redundancy Maximum Relevance
CNN: Convolutional Neural Network

ROC: Receiver Operator Characteristics

SVM: Support Vector Machine

LBP:  Local Binary Patterns



MR radiomics for determination of MGMT and
1p/19q-Status in glioma

Tumor type MRI N Feature Selection | Final Classification Diagnostic accuracy
Biomarker methods | train /valid | Set method features method (valid. set
if available)
Korfiatis GBM T1/CE, 155/0 18 Ridge 4 SVM 81%
(2016) MGMT methyl /non T2 regressio Random
43% [ 57% n Forest
Xi GBM T1/CE, 98 /20 1665 LASSO 36 SVM 80%
(2016) MGMT methyl /non T2
44% [ 56%
Han GBM T1,T2, 117/ 42 512 CRNN n.a. Softmax 62%
(2018) MGMT methyl /non FLAIR (nodes in L2-regul.
n.a. final layer)
Zhou WHO I T1/CE, 165/0 4x 42 ROC 3 Multivariate 90%
(2017) 1p/19q codel / non T2, Log. Regress.
25% / 75% FLAIR
Shofty WHO Il T1CE, T2, 47 /0 152 MWU- 9 Ensemble 87%
(2017) 1p/19q codel / non FLAIR test Bagged Trees
55% / 45% PCA

Abrevatations:

CRNN: Convolutional Recurrent Neural Network
CNN: Convolutional Neural Network

ROC: Receiver Operator Characteristics

SVM: Support Vector Machine

MWU: Mann-Whitney U-test

PCA: Principle Component Analysis



Radiomics
Tumor Segmentation

The Multimodal Brain Tumor Image
Segmentation Benchmark (BRATS)

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 10, OCTOBER 2015

Fig. 3. Manual annotation through expert raters. Shown are image patches with the tumor structures that are annotated in the different modalities (top left) and
the final labels for the whole dataset (right). Image patches show from left to right: the whaole mumor visible in FLAIR (A). the tumer core visible in T2 (B). the
enftamcing tumor structures visible in Tlc (blue). swrounding the cvstic/recrotic components of the core (green) (C). Segmentations are combined to generate the
final labels of the munor strucmires (D) edema (vellow), non-enhancing solid core (red). necromic/cysiic core (green). enhancing core(blue)



Radiomics: Segmentation

The Multimodal Brain Tumor Image
Predictions P Segmentation Benchmark (BRATS)

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 10, OCTOBER 2015
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D Buendia Bit-grouping artificial immune network BRATS 2013
|:| Cordier Patch-based tissue segmentation approach Rf_:al d_ala whole core active
|:| Doyle Hidden Markov fields and variational EM in a generative model Dice (in _%) S oy | LG

. —— | | Cordier 84 68 63

D Festa Random forest classifier using neighborhood and local context features I:I Doyle 71 46 52
m Guo Semi-automatic segmentation using active contours I:I Festa 72 66 67
B Meier Appearance- and context-sensitive features with a random forest and CRF . Meier 82 73 69
. Reza Texture features and random forests . Reza 83 72 72
. Taylor “Map-Reduce Enabled” hidden Markov models Tu&llb@ll E B H
. Tustison Random forest classifier using the open source ANTs/ANTsR packages j Zhao (H) 84 70 65
. Zhao (II) Like “Zhao (I)" with updated unary potential
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Combined FET-PET/MRI Radiomics

Discrimination of radiation necrosis from
recurrence in metastases treated by
° Histogram stdValue
radiosurgery Volume

Shape Sphericity
Compacity
GLCM Homogeneity
Contrast
Correlation
Entropy
Dissimilarity
GLRLM SRE
LRE
SRHGE
LRHGE
GLNUr
RLNU
CET1 MRI (DWT3) CE RP
NGLDM Coarseness
Contrast
GLZLM SZE
LZE
LZHGE
GLNUz
ZLNU
ZP

CE-MRI, unfiltered
CE-MRI, LoG
CE-MRI, DWT3

FET PET

Rec

RN

Rec > RN p <0.05
p <0.01
p <0.005

daccuracy Rec <RN [ | p<o0.05

p <0.01

MRI 81% I o <o0.005
FET-PET 83%
Combined 89%

Lohmann et al. , submitted



Hi, this is NeuroCastR®, your personal digital assistant in
Neuro-Oncology,

... sSegmentation
... computing features
... generating predictions

Probability GBM:
Probability AA:
Probability OD:

Probability IDH-mut:
Probabilty 1p/19q codel:
Probability MGMT-methyl:

Prediction Survival@1lyear:

.... generating resection mask

90%
5%
0%

37%
1%
56%

48%



Radiomics: Summary

Digital images contain a large amount of data
Methods from digital image processing & statistics
Convolutional neural networks

Outcome prediction from radiomic features
Assessment of genetic markers (accuracy 80-90%)
Visualisation of feature maps

Advanced methods for tumor segmentation



