

MR-guided radiotherapy: Vision, status and research at the UMC Utrecht Dipl. Ing. Dr. Markus Glitzner

About myself

- Training
 - Medizintechnik TU Graz
 - PhD UMC Utrecht
- Clinical work
 - Software implementation (ART, IGRT)
 - Infrastructure maintainance (DICOM servers, workflows)
 - MRI (commissioning, QA, protocol development)

- Research
 - Starlit project 16M€
 - Fast MRI-acquisition

– MLC tracking

Topics

- Simultanous MRI /Why MRI-linac
- Image quality
- MRI-linac at the UMC Utrecht
- First clinical action of MRI-linac

- Research
 - Adaptive replanning
 - Online imaging
 - Real-time imaging
 - Latency
 - Geometric fidelity
 - MLC tracking

- Image guidance
 - Solve anatomic uncertainty
 - Reduce the margins!
 - At the moment of radiation
 - With diagnostic image quality

T₂ Weighted MRI of rectum, Courtesy Martijn Intven

3D T₂-TSE

2D T₂-TSE

Irradiating individual lymph nodes

Lymph node visualization, courtesy Tristan van Heijst

- Solve uncertainty due to motion
 - Resolve and visualize motion
 - Discrimination of target and surroundings
 - Independent of linac position

ONLINE MRI

MRI-guidance research and developments

- Utrecht, The Netherlands
 - 1.5 T MRI, 7 MV linac
 - www.elekta.com/mr-linac
- Edmonton, Canada
 - 0.5 T MRI, 6 MV linac
 - www.magnettx.com
- Viewray, Cleveland, USA (www.viewray.com)
 - 0.35 T MRI, 3 Co sources or 6 MV linac (Feb 2014)
 - Clinical since 2014
- Australia MR linac project, Sydney (www.sydney.edu.au)
 - 1.0 T MRI, 6 MV linac

MRI-linac design at the UMC Utrecht

J Overweg et al 2009 Proc. Intl. Soc. Mag. Reson. Med. 17

- Bore design
 - High field strength
 - Diagnostic image quality
 - Good field homogeneity
- Radiation transparency
 - Coil gap
 - Uniform gamma attenuation in cryostat
 - Split gradient coil
- Active shielding

OT zone

MRI-linac design at the UMC Utrecht

Cooling equipment

Power supplies & electronics

MLC & accelerator waveguide

RF waveguides

Modulator

MRI-linac at the UMC Utrecht

More recent:

- Upgrade to CE-configuration
- Set-to-work
- Finished in July 2018
- First patient in pre-CE state

Lagendijk and Bakker, MRI guided radiotherapy - A MRI based linear accelerator Radiotherapy and Oncology Volume 56, Supplement 1, September 2000, 220 (ESTRO 19)

First patient on the MRL: "First in Man"

Raaymakers et al. PMB. 2017;62(23):41-50

First in Man: Summary

- Total time **54 minutes** for entire procedure
 - 15 min patient set-up
 - 7 min preparation MRI
 - 4 min registration and contour validation
 - 11 min planning
 - 10 min delivery and beam-on MRI

- Bone match using EPID and pseudo CT DRR
- Theraview software
- Displacement vector (3D): 0.3 mm

First in Man: Dose reconstruction

- Independent (geometry, state) 3D MR imager
- Time-stamped MRI data + time-stamped linac geometry
- Forward dose calculation
- First live dose reconstruction
- Dose validation

M Glitzner et al 2015 Phys. Med. Biol. 60 8869

'168°

Kontaxis et. al 2017 PMB 62 7233

Inter-beam replanning regime

Kontaxis et al. PMB 2017

Baseline drift correction and margin reduction

Kontaxis et. al 2017 PMB 62 7233

MR-linac therapy guidance: real time, MRI-guided MLC-tracking

- Response (tracking) quality
 - Image fidelity
 - geometric accuracy
 - Target/OAR
 - Surrogate
 - Temporal quality
 - real-time

J asynchronous program

MR-linac therapy guidance: real time, MRI-guided MLC-tracking

- A typical day of an real-time MRI-linac system
 - Take an image (🛣)
 - Process the image (\mathbf{X})
 - Estimate motion in the image ($\overline{\mathbf{X}}$)
 - Process motion into a suitable adaptation ($\overline{\mathbb{Z}}$) (segment shift)
 - Apply adaptation as long as it is suitable (\mathbf{X})
 - Be done fast and start all over ...

MR-linac therapy guidance: Imaging latency

Object in MRIphysical object

Physical motion

MRI

MRI-latency: How long does the image acquisition take...

• 'Normal sensors' Integration time + readout

• Special sensors, i.e. DSLR

• MRI sensors

WHERE and WHEN is my image formation

MRI latency analysis

 Hypothesis: High sensitivity of k-space-based read-out to trajectory

• Acceleration using partial sampling/partial Fourier

MRI latency analysis: Cartesian result

linear

high-low

MRI latency analysis con'd: Radial results

- Generally, $\Delta T = t_{acquisition}/2$
- Golden angle sampling:
 - Temporal weighting filter penalizes importance of "old spokes"
 - Signal processing can reduce latency about 50%, T=t_{acquisition}/4

- Runtime estimation
 - Acquisition: 180ms 550ms + image age!
 - Preprocessing + motion estimation: ~80ms
 - Plan adaptation (simple tracking, gating): 5ms
 - MLC tracking: ~30ms

The proof of the pudding: MLC tracking on the MRI linac

Experiments: MRI-guided position feedback

Estimated latency	10Hz	41.94
	5Hz	127.11

MRI-guidance at UMC Utrecht

- Prototype phase finished
 - Clinical proof of concept
 - Beam & plan QA
- CE clearance in due time (July 2018)
- Strong research line
 - Real-time imaging and MLC tracking
 - Adaptive replanning
- See what you treat

