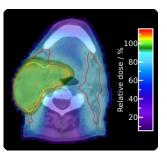
OncoRay – National Center for Radiation Research in Oncology, Dresden

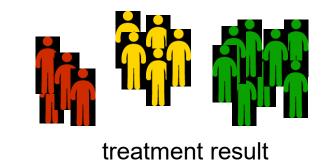
Radiomics opportunities and challenges

Alex Zwanenburg

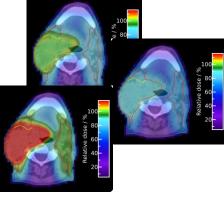
HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF



Radiomics for personalised medicine

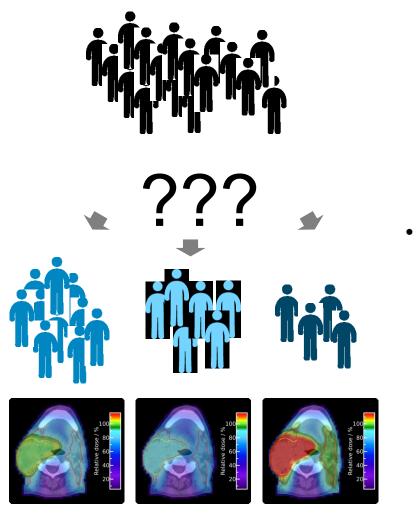


same cancer diagnosis

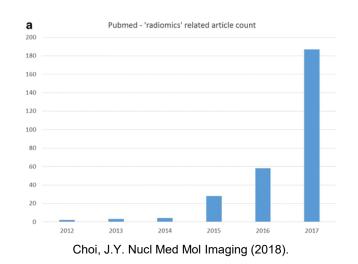

same treatment


inter-patient heterogeneity

same cancer diagnosis



personalised treatment



Radiomics for personalised medicine

- Treatment personalisation based on:
 - Clinical data (staging)
 - Demographic data (smoking, age)
 - Tumour genetics (gene mutations, RNA expressions)
 - Imaging
- Radiomics: High-throughput analysis of medical imaging

A spectrum of imaging

amount of quantified information \rightarrow

Visual assessment

no quantification

lung nodule detection, tumor localization, nodal involvement

Quantitative analysis

quantification of simple features

tumor staging, RT dose planning, treatment individualization Conventional radiomics quantification using handcrafted features

treatment individualization, differentiation of histological subtypes Deep learning radiomics convolutional neural networks

lung nodule detection, tumor localization & segmentation, treatment individualization

Does radiomics work?

- Most radiomic studies are difficult to reproduce:
 - Important details are not reported
 - Bias in development and validation of radiomic models
 - Data may not provide the required heterogeneity:
 - Small data sets
 - Single center cohorts
- Addressing heterogeneity:
 - Use more data from different sources (*study-centric solution*)
 - Reduce sources of variability (*field-wide solution*)

Visual assessment

acquisition and reconstruction

Sources of variability

• inter-observer variability

Sources of variability

Visual assessment

acquisition and reconstruction

Quantitative analysis

acquisition and segmentation reconstruction

Sources of variability

- inter-observer variability
- image acquisition
- image reconstruction
- segmentation
- software errors

Sources of variability

Visual assessment

acquisition and reconstruction

Quantitative analysis

acquisition and segmentation reconstruction

Conventional radiomics

acquisition and reconstruction	segmentation	image processing	feature computation	modelling	

Sources of variability

- inter-observer variability
- image acquisition
- image reconstruction
- segmentation
- software errors
- image processing
- feature computation
- modelling approaches
- modelling errors

Sources of variability

Visual assessment

acquisition and reconstruction

Quantitative analysis

acquisition	
and	segmentation
reconstruction	

Conventional radiomics

acquisition and reconstruction	image processing	feature computation	modelling
--------------------------------------	---------------------	------------------------	-----------

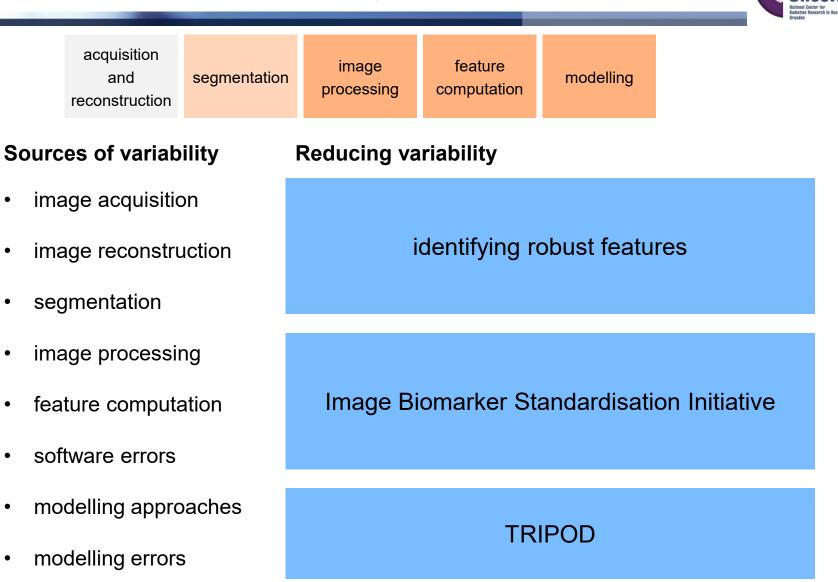
Deep learning radiomics

acquisition and reconstruction	image processing	feature computation	modelling
--------------------------------------	---------------------	------------------------	-----------

Sources of variability

- inter-observer variability
- image acquisition
- image reconstruction
- segmentation
- software errors
- image processing
- feature computation
- modelling approaches
- modelling errors
- deep learning architecture

Can we reduce variability?


Sources of variability

- image acquisition
- image reconstruction
- segmentation
- image processing
- feature computation
- software errors
- modelling approaches
- modelling errors

Reducing variability

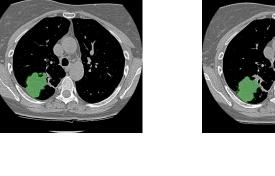
- \rightarrow calibration, standard protocols
- \rightarrow standard protocols & algorithms
- \rightarrow standard protocols, (semi-)automated contouring
- \rightarrow standard workflow, benchmarks
- \rightarrow standard definitions, benchmarks
- \rightarrow benchmarks
- \rightarrow guidelines
- \rightarrow guidelines, benchmarks

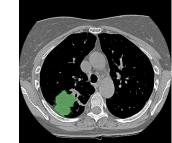
Can we reduce variability?

Finding robust features

• Conventional approach: test-retest imaging

acquisition and reconstruction


segmentation


Tumour-phenotype specific!

• Proposed approach: *image perturbations*

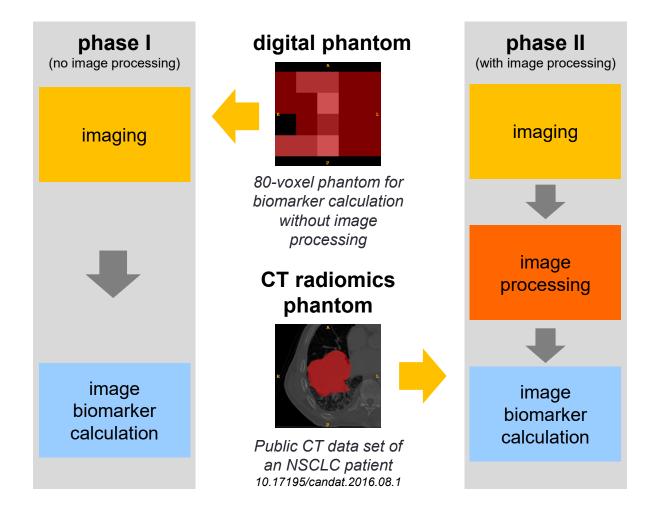
rotation noise addition translation shrinkage/ randomisation growth

Perturbations can identify robust features if no test-retest set is available.

Image biomarker standardisation initiative

- Aims:
 - Establish nomenclature and definitions for 172 commonly used image biomarkers
 - Establish an image processing scheme for feature computation
 - Provide benchmark data sets and associated values for software verification
 - Provide a set of reporting guidelines

image processing



feature

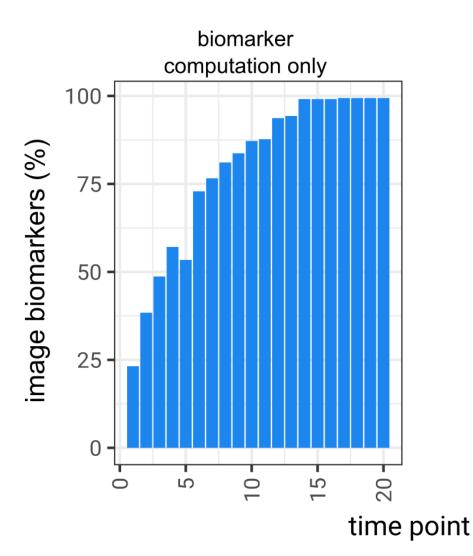

computation

Image biomarker standardisation initiative

Image biomarker standardisation initiative

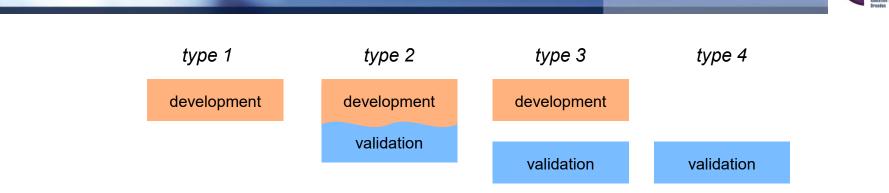
OncoRay (IN) National Center for Rediction Research in Oncology

Modelling

Annals of Internal Medicine RESEARCH AND REPORTING METHODS

Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement Gary S. Collins, PhD; Johannes B. Reitsma, MD, PhD; Douglas G. Altman, DSc; and Karel G.M. Moons, PhD

Annals of Internal Medicine RESEARCH AND REPORTING METHODS


Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration

Karel G.M. Moons, PhD; Douglas G. Altman, DSc; Johannes B. Reitsma, MD, PhD; John P.A. Ioannidis, MD, DSc; Petra Macaskill, PhD; Ewout W. Steyerberg, PhD; Andrew J. Vickers, PhD; David F. Ransohoff, MD; and Gary S. Collins, PhD

- The TRIPOD papers describe:
 - how to create **unbiased** diagnostic and prognostic models
 - how to report them
- Use TRIPOD to improve the quality of your research

modelling

The importance of validation

- Example 1: type 1 with univariate feature selection
- Example 2: type 1 with LASSO feature selection (*less features in model*)
- Example 3: type 2 with LASSO and cross-validation
- Example 4: type 2 with feature selection <u>on all data</u>, and cross-validation
- Example 5: type 3 with external validation of 1-4

example	validation set	reported validation	external validation
1	development	0.71 (0.65-0.77)	0.53 (0.43-0.62)
2	development	0.68 (0.62-0.74)	0.55 (0.44-0.65)
3	validation folds	0.51 (0.38-0.64)	0.55 (0.43-0.65)
4	validation folds	0.63 (0.50-0.77)	0.55 (0.46-0.64)

Conclusion

- Many radiomic studies are not reproducible
- Radiomics is susceptible to variability
- The influence of variability can be reduced, but requires:
 - technological development (e.g. auto-segmentation)
 - harmonisation
 - methodological rigour
 - effort and collaboration

Questions

alexander.zwanenburg@nct-dresden.de