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inter-patient heterogeneity
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Radiomics for personalised medicine

 Treatment personalisation based on:
— Clinical data (staging)
— Demographic data (smoking, age)

— Tumour genetics (gene mutations,
RNA expressions)

— Imaging

 Radiomics: High-throughput analysis
of medical imaging

a Pubmed - ‘radiomics' related article count

2012 2013 2014 2015 2016 2017

Choi, J.Y. Nucl Med Mol Imaging (2018).




A spectrum of imaging

amount of quantified information -

Visual assessment Quantitative analysis Conventional
radiomics
no quantification quantification of simple quantification using
features handcrafted features
lung nodule detection,  tumor staging, RT dose treatment
tumor localization, planning, treatment individualization,
nodal involvement individualization differentiation of
histological subtypes
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Does radiomics work?

“It depends...”

» Most radiomic studies are difficult to reproduce:
— Important details are not reported
— Bias in development and validation of radiomic models
— Data may not provide the required heterogeneity:
« Small data sets
« Single center cohorts

« Addressing heterogeneity:
— Use more data from different sources (study-centric solution)
— Reduce sources of variability (field-wide solution)
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Sources of variability

* inter-observer variability
image acquisition
image reconstruction
segmentation

software errors
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Sources of variability
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Sources of variability

* image acquisition

* image reconstruction

* segmentation

» software errors

* image processing

» feature computation

* modelling approaches

* modelling errors

» deep learning architecture

image feature ,
: , modelling
processing computation
image feature _
: , modelling
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Can we reduce variability?

acquisition

and segmentation

reconstruction

Sources of variability

image acquisition
image reconstruction
segmentation

image processing
feature computation
software errors
modelling approaches

modelling errors
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Reducing variability

—> calibration, standard protocols

—> standard protocols & algorithms

- standard protocols, (semi-)automated contouring
standard workflow, benchmarks
standard definitions, benchmarks

N
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- benchmarks
- guidelines
S

guidelines, benchmarks



Can we reduce variability?

acquisition
and segmentation
reconstruction
Sources of variability Reducing variability

* image acquisition

* image reconstruction

* segmentation

* image processing

« feature computation

» software errors

* modelling approaches

* modelling errors
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Finding robust features W UncoRay-
. . . . acquisition
« Conventional approach: test-retest imaging - S
reconstruction

Tumour-phenotype specific!

rotation noise addition translation Shrinkage/ randomisation
growth

Perturbations can identify robust features if no test-retest set is available.

Zwanenburg et al. Assessing robustness of radiomic features by perturbing images (in prep.)
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Zwanenburg et al. Standardized quantitative radiomics for high-throughput image-based phenotyping (subm. | pre-print: arXiv:1612.07003)
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Image biomarker standardisation initiative

phase | digital phantom phase Il

(no image processing) (with image processing)

imaging

¥

imaging

80-voxel phantom for
biomarker calculation
without image
processing

‘ CT radiomics

phantom

A 4

image

image
biomarker biomarker
calculation ) )
Public CT data set of calculation

an NSCLC patient
10.17195/candat.2016.08.1

Zwanenburg et al. Standardized quantitative radiomics for high-throughput image-based phenotyping (subm. | pre-print: arXiv:1612.07003)



Image biomarker standardisation initiative
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Zwanenburg et al. Standardized quantitative radiomics for high-throughput image-based phenotyping (subm. | pre-print: arXiv:1612.07003)
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Annals of Internal Medicine RESEARCH AND REPORTING METHODS

Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis (TRIPOD): The TRIPOD Statement

Gary 5. Collins, PhD; Johannes B. Reitsma, MD, PhD; Douglas G. Altman, D5c; and Karel G.M. Moons, PhD

modelling

Annals of Internal Medicine RESEARCH AND REPORTING METHODS

Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis (TRIPOD): Explanation and
Elaboration

Karel G.M. Moons, PhD; Douglas G. Altman, D5c; Jehannes B. Reitsma, MD, PhD; John P.A. loannidis, MD, D5<;
Petra Macaskill, PhD; Ewout W. Steyerberg, PhD; Andrew J. Vickers, PhD; David F. Ransehoff, MD; and Gary 5. Collins, PhD

The TRIPOD papers describe:
— how to create unbiased diagnostic and prognostic models

— how to report them

Use TRIPOD to improve the quality of your research
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type 1 type 2 type 3 type 4
development development development
validation
validation validation

« Example 1: type 1 with univariate feature selection

« Example 2: type 1 with LASSO feature selection (less features in model)
« Example 3: type 2 with LASSO and cross-validation

« Example 4: type 2 with feature selection on all data, and cross-validation
« Example 5: type 3 with external validation of 1-4

example validation set reported validation external validation
1 development 0.71 (0.65-0.77) 0.53 (0.43-0.62)
2 development 0.68 (0.62-0.74) 0.55 (0.44-0.65)
3 validation folds 0.51 (0.38-0.64) 0.55 (0.43-0.65)
4 validation folds 0.63 (0.50-0.77) 0.55 (0.46-0.64)

Zwanenburg and Lock. Why validation of prognostic models matters? (Radiotherapy and Oncology, 2018)
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Conclusion

« Many radiomic studies are not reproducible
« Radiomics is susceptible to variability

« The influence of variability can be reduced, but requires:

— technological development (e.g. auto-segmentation)
— harmonisation

— methodological rigour

— effort and collaboration
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