

Einfluss verschiedener Beschleunigerparameter auf die VMAT - Planqualität

Max Graf
Dr. Thomas Koch

An der VMAT beteiligte Parameter:

- Gantry-, Blenden-, Leafgeschwindigkeit
- Dosisleistung
- Dosisquerverteilung
- Blendenposition
- Leafbankposition (MLC Kalibrierung)

Methode zur Überprüfung des Einflusses jedes Parameters:

- 3 Testpatienten:
 - Linke und rechte Brust
 - Sacrum
 - Pläne erzeugt mit Pinnacle
 - Pro Patient jeweils ein Arc clockwise sowie counterclockwise
- Messphantom: Delta 4 von Scandidos
- Direkte Beeinflussung aller beteiligten Parameter über die Steuerkonsole des Beschleunigers (Software)

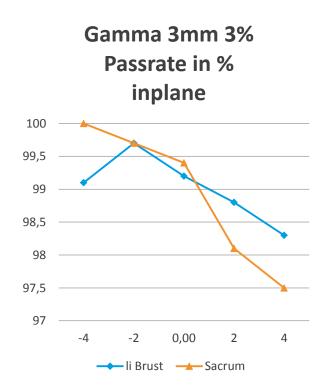
Leaf-, Blenden-, Gantrygeschwindigkeit

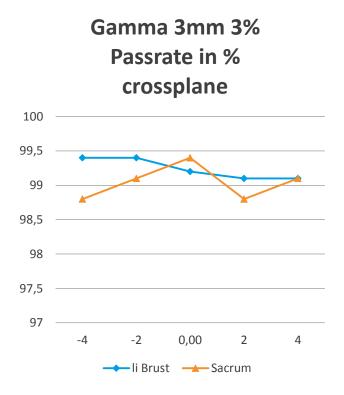
- Feste Definition der Maximalgeschwindigkeit jedes Parameters innerhalb der Steuersoftware
- Absolutdosis zwischen zwei Kontrollpunkten (Segmentdosis) wird zur Bestimmung der Dosisleistung (mit Hilfe der Geschwindigkeit des langsamsten Parameters) und der restlichen Geschwindigkeiten verwendet.
- Limitierung der Geschwindigkeiten:
 - Der Beschleuniger ist in der Lage, eine gewisse Limitierung auszuregeln.
 - Bei großen Abweichungen von der Maximalgeschwindigkeit schaltet der Beschleuniger ab.
- Überprüfung der Geschwindigkeiten mit Hilfe des Service Graphing Tools sehr einfach möglich

Dosisleistung:

 CVDR (Continuously Variable Dose Rate) vs. standard Dosisleistungsstufen (7 feste Stufen)

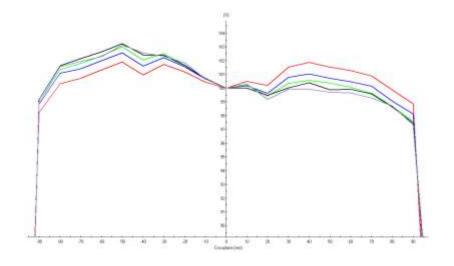
Plan	li Brust	re Brust	Sacrum
mit CVDR	98,5 %	99,1 %	99,7 %
ohne CVDR	98,3 %	99,2 %	99,7 %

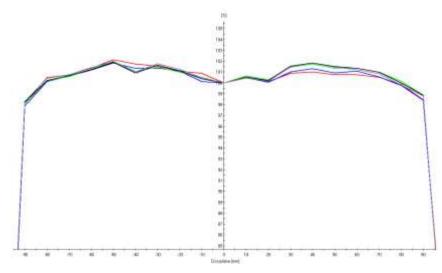

Ergebnisse am Beispiel des Gamma-Kriteriums


- Ergebnis identisch, jedoch Zeitersparnis von bis zu 35% pro Arc aufgrund intelligent gewählter Geschwindigkeiten (vor allem Gantry)
- Abweichungen von mehr als 20% von der Solldosisleistung führen zur Abschaltung des Beschleunigers. Jede Abweichung kleiner 20% kann der Beschleuniger über das Anpassen der Geschwindigkeiten aller beteiligten Parameter ausregeln.

Dosisquerverteilung:

 Veränderung der Dosisquerverteilung in inplane und crossplane um ± 2% und ± 4% Symmetrie




Dosisquerverteilung in Abhängigkeit der Dosisleistung:

- Inplane: Regelkreis, Abweichung gegen Null
- Crossplane: normalerweise kein Regelkreis, Abweichung ca. 4% Symmetrie, mit eingeschaltetem Regelkreis Abweichung gegen Null.
- Beste Ergebnisse bei dynamischen MLC Prüfungen mit eingeschaltetem Regelkreis

Regelkreis aus vs. Dosisleisung

Regelkreis ein vs. Dosisleisung

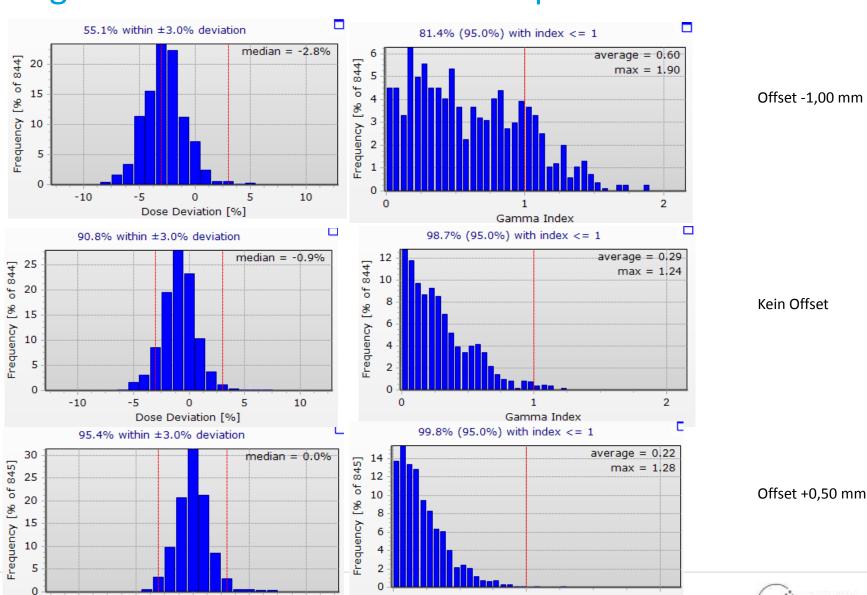
Blendenposition:

- Absolute Position der Inplane-Blende kaum von Bedeutung.
 - Erst eine Fehlpositionierung je Blende von ± 3 mm hat Einfluss auf das Messergebnis : Gamma 3% 3mm von 98% auf 97%
 - Interpretation: Bei schmalen Segmenten, welche durch den MLC in crossplane limitiert werden, hat die Inplane-Blende wenig Anteil an der Feldbegrenzung → absolute Position weniger relevant
- Blendenposition lässt sich auf kleiner 0,5mm bestimmen (Halbfelder)
- Backupblenden (MLCi2) müssen mindestens 1mm hinter dem MLC stehen.

Position der Leafbank

2 Fehlertypen:

- Leafbank Offset Fehler (Veränderung der Schlitzbreite)
- Gleichzeitiger paralleler Versatz beider Leafbänke (gleichbleibende Schlitzbreite


Digitale Einheiten	3	6	9	13
Versatz in mm	0,25	0,50	0,75	1,00

Rundung digitaler Einheiten beim Leafbank Offset in Millimeter

 Annahme für alle Messungen: Positionierung der einzelnen Leaves einer Leafbank untereinander besser als ± 0,5 mm aufgrund vorheriger Kalibrierung

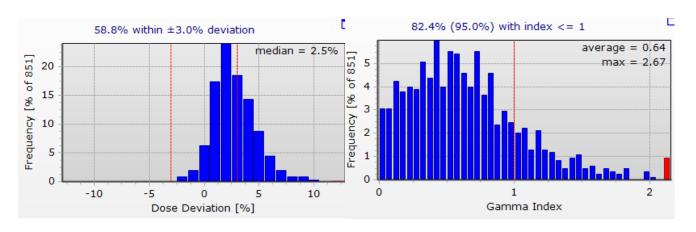
Ergebnisse eines Leafbankoffset pro Leafbank:

2

Gamma Index

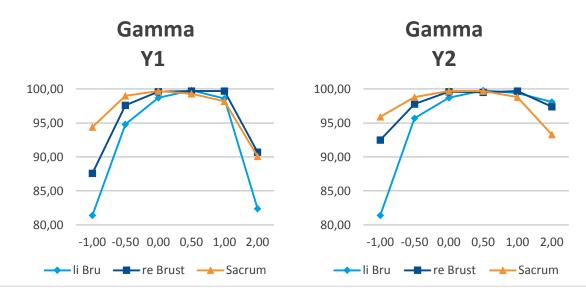
-5

-10

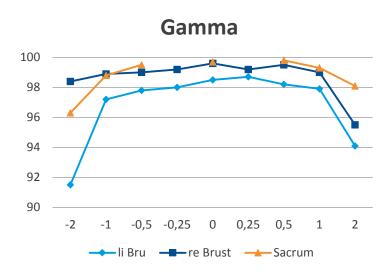

0

Dose Deviation [%]

5


10

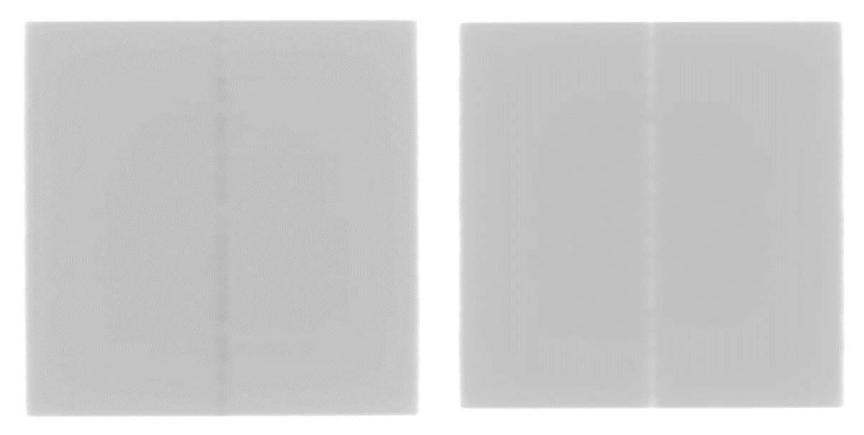
Ergebnisse eines Leafbankoffset pro Leafbank:


Offset +2,00 mm

Zusammenfassung Leafbankoffset:

Paralleler Offset Versatz:

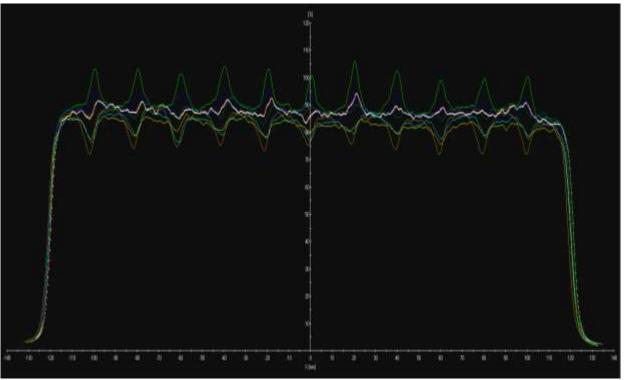
 Aufgrund der begrenzten Ortsauflösung des Messphantoms und des 3mm Gammakriteriums ist ein paralleler Versatz erst ab ca. 2mm detektierbar.


Ansatz für eine maschinenbezogene Qualitätssicherung in Hinblick auf VMAT

- Einfache Überprüfung aller beteiligten Geschwindigkeitsparameter mit Hilfe des Service Graphing Tools.
- Voraussetzung für die Überprüfung aller Blenden- und MLC Positionen ist ein Beam, der den Beschleuniger gerade (Winkel) und ohne Spotversatz zur Kollimatordrehachse verlässt.

Optimierung der statischen Leafbankposition:

Anschlussfelder mit Kollidrehung um 180 Grad


Überdosierung, Leafbank zu weit offen

Unterdosierung, Leafbank zu weit geschlossen

Optimierung der statischen Leafbankposition:

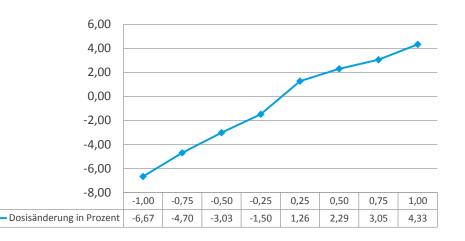
Streifentest: Angesetzte Felder der Breite 2cm. Dosimetrische Auswertung eines Gafchromic Filmes:

Offset in mm	-1,00	-0,50	-0,25	0	0,25	0,50	1,00
Dosisspitze	-20%	-10%	-5%	±2,5%	+5%	+10%	+20%
ca. in Prozent	-20%	-10%	-3%	±2,5%	+5%	+10%	+20%

Dynamische Überprüfung der Leafbankposition:

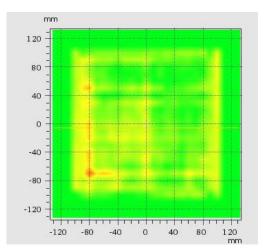
- Sliding Window: 1cm breiter Streifen dynamisch über 20cm Verfahrweg. Mit Hilfe einer fixen Dosisleistung (400 MU, CVDR) lässt sich so die Verfahrgeschwindigkeit mit Hilfe der Absolutdosis verändern.
- Einfache Erstellung der Felder in der Software icom Cat, welche dem Beschleuniger beiliegt.
- Aufgrund der begrenzten Ortsauflösung vieler eingesetzter Messsysteme lässt sich die Schlitzbreite indirekt über die absolute Dosis eines Kammerarrays bestimmen. In diesem Fall wurde ein PTW 729-2D Array verwendet.

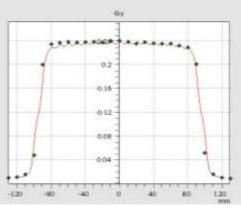
Einfluss eines Leafbankoffsets auf die Absolutdosis eines Sliding Window Feldes:

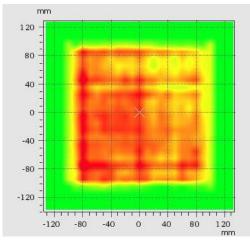

Offset in mm		-1,00	-0,50	-0,25	+0,25	+0,50	+1,00
Dosisdifferenz in Prozent.	$1,50 \frac{cm}{s}$	- 17,8	- 7,7	- 3,8	+ 3,3	+ 6,7	+ 13,5
	$0,63 \frac{cm}{s}$	- 18,4	- 8,0	- 3,8	+ 4,0	+ 7,6	+ 15,2
	$0,32 \frac{cm}{s}$	-18,2	- 7,8	- 3,7	+ 4,1	+ 8,1	+ 15,8

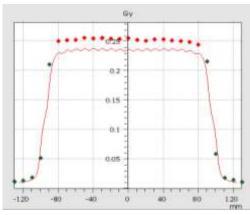
Schlitzbreite 1cm

Offset in mm	-0,50	-0,25	+0,25	+0,50
Dosisdifferenz in Prozent	-17,6	-8,7	+8,5	+17,2


Schlitzbreite 5mm


Zum Vergleich: Dosisänderung aufgrund eines Leafbankoffsets bei einem statischen, 1cm breiten Feld. Aufgenommen mit PTW SRS 1000





Einfluss eines Leafbankoffsets auf die Absolutdosis eines Sliding Window Feldes:

Vergleich der errechneten Dosisverteilung von Pinnacle mit der tatsächlichen Verteilung. Links: Kein Leafbankoffset

Gamma bei 3mm, 5%:

Rechts: Offset 0,25 mm

Links: 99,8% Rechts: 46,6%

Zusammenfassung:

- Geringer bis gar kein Einfluss aller Geschwindigkeitsparameter auf die VMAT Planqualität, solange innerhalb der Toleranzen.
 Bei größeren Abweichungen: Abschaltung; Einfache Überprüfung mit Hilfe des Service Graphing Tools
- Dosisleistung und Querprofile haben ebenfalls geringen Einfluss → Standard Überprüfung mit 2 D Array genügt
- Großer Einfluss: Absolute Positionierung des MLCs. Schnelle Überprüfung mit Streifentest (dosimetrisch) und angesetzten Halbfeldern (Parallelversatz)

Fazit:

- Sliding Window als Universaltest. Vergleich mit berechneter Dosisverteilung gibt schnell Aufschluss über die absolute Schlitzbreite und damit der MLC Kalibrierung
- Vorteil bei Tandembetrieb, wenn ein Beschleuniger deutlich schlechtere Verifikationsergebnisse liefert
- Bei alleiniger rechnerischer Planverifikation z.B. anhand Logfiles bleibt ein Versatz einer Leafbank unbemerkt.

Gerne beantworte ich offene Fragen.

Vielen Dank für Ihre Aufmerksamkeit!

