γ **101**

Daniel Low, Ph.D. Director, Division of Medical Physics Radiation Oncology

Decisions - Before

Decisions - Now

What is γ ?

- γ is the rescaled minimum Euclidean distance between an evaluated distribution and each point in a reference distribution
- Each spatial and dose axis is normalized by a criterion
- Renormalized "distance" defaults to distance to agreement and dose difference in shallow and steep dose gradient regions, respectively.

Example Dose Distribution, No Noise

- Two 10 x 10 fields
- 6 MV
- Coronal
- 3%, 3mm criteria

Reference Distribution (10x10 cm²)

Evaluated Distribution

Dose Difference

Distance-to-Agreement

Gamma

Spatial Resolution

- γ is calculated independently for each reference point
- Reference distribution can be a single point
- Evaluated distribution 1D-3D
- Resolution challenge

3% & 3mm

Evaluation Distribution Interpolation

Uninterpolated

Interpolated voxels 8x

Interpolation

- Fixes resolution problem with evaluated distribution
- Cost in computation time
- Think of interpolation as geometric problem
 - Closest distance between line, surface, volume and one point
- Fast computation provided by computer gaming
- Ju et al. Med. Phys. 35, 879-887 (2008).

Simplexes

- Break up evaluated dose distribution into simplexes
 - Line segments, triangles, tetradhedra
 - Distance from point to a simplex can be computed easily in closed form
- Making Simplexes
 - Quadrilateral dose surface divided into two triangles
 - Cubic (hexahedral) dose surface divided into five tetrahedra.

Distance Calculation

- Make dose surface into simplicial mesh
 - Collection of Simplexes
 - 3D for film, 4D for dose distribution comparisons (*n*)
 - k-simplex S (0<= k <= n) is convex hull of k +1 points (vertices of S)
 - Film dosimetry, simplex can be point (0-simplex), line (1-simplex), or triangle (2-simplex)
- We want distance between p and the evaluated distribution

Distance Calculation

- Distance from *p* to *k*-simplex S is shortest distance between *p* and
 - Any point lying on boundary or interior of S
- At any boundary or interior point *v* of *S* can be described by

$$v = \sum_{i=1}^{k+1} w_i v_i$$

• Where $\{v_1, \dots, v_{k+1}\}$ are coordinates of S vertices and $\{w_1, \dots, w_{k+1}\}$ are non-negative weights from zero to 1 and sum up to 1.

Weight Point Definition

- Weights w are the relative {length, area, volume, hypervolume} of the opposing simplex.
- 2-simplex: the three weights add to 1

Compute Distance to Simplex S

Solve following (point on plane relative to reference point)

$$\overline{D}(p,S) = \min_{\{w_1,\dots,w_{k+1}\},s.t.\sum_{i=1}^{k+1} w_i = 1} | p - \sum_{i=1}^{k+1} w_i v_i |$$

Solution

 This equation has a closed form solution that requires ONLY matrix inversion!

$$\{w_1, \dots, w_k\} = (V^T V)^{-1} V^T P, \quad w_{k+1} = 1 - \sum_{i=1}^k w_i$$

• Where

$$P = \begin{cases} c_1(p) - c_1(v_{k+1}) \\ \vdots \\ c_n(p) - c_n(v_{k+1}) \end{cases}, \quad V = \begin{cases} c_1(v_1) - c_1(v_{k+1}) & \cdots & c_1(v_k) - c_1(v_{k+1}) \\ \vdots & \vdots & \vdots \\ c_n(v_1) - c_n(v_{k+1}) & \cdots & c_n(v_k) - c_n(v_{k+1}) \end{cases}$$

c_i refers to the *i*th coordinate (e.g. x, y, d)

Locate Minimum Distance

- The minimum distance either lies
 - Within the simplex
 - Done!
 - Outside the simplex
 - Must lie on the edge or vertex of the simplex
 - This is just the next lower dimension simplex!
 - Recursive algorithm

Uninterpolated

Interpolated voxels 8x

Geometric Method

Noise and γ

- Dose distribution noise has profound impact on γ calculations
- The impact depends on whether the noise is in the reference or evaluated distributions

Why Noise Impacts y

Thanks to Matt Whitaker, RIT

UCLA

- Ideal case with a constant 5% difference between the point to be evaluated and the target image surface.
- With no noise a 3mm, 3% gamma will evaluate to 1.667 for this situation (fail).

Thanks to Matt Whitaker, RIT

- If we add Gaussian noise with 0 mean and 3.16 standard deviation we see that the ellipsoid is penetrated.
- Anywhere the ellipsoid is penetrated $\gamma \leq 1$ (pass)

Thanks to Matt Whitaker, RIT

Impact of noise depends on whether it is in the reference or evaluated distribution!

- Evaluated: Typically underestimates γ (γ is the **minimum** distance!)
- Reference: Noise is reflected in γ

No Noise

3% Evaluated

3% Reference

Gamma Histograms

 Two distributions with no dose gradients (flat). Differ by 3% (3% dd criterion) so no-noise γ is 1 everywhere

Clinical Issues

- Spatial resolution in evaluated distribution is important unless some type of interpolation is used
- Dose difference criterion is intuitive
- DTA criterion
 - Spatial uncertainty (measurements)
 - Spatial allowance (margins)
- How do we interpret γ failures?

γ failures

- 100% passing would be nice!
- Not practical
- Caution: γ tool should be used as an indicator of problems, not as a single indicator of plan quality

Thanks to Geneviève Jarry, HMR, Montreal

Target Volume Cold Spots

Thanks to Geneviève Jarry, HMR, Montreal

UCLA

Normalization

- Gamma is sensitive to normalization
- Two otherwise identical dose distributions will have very poor γ distribution if they have different normalizations
- Renormalization may be necessary but be careful!

Other Applications

Hrbacek et al, Med Phys 34, 2917 (2007)

Criteria

- Spatially varying criteria (both dd and DTA
 - Anatomical (target versus muscle)
 - Dose (high versus low)
- This may be very useful with new backprojected and independently calculated 3D dose distributions
- Medically appropriate criteria will make interpretation of γ more straightforward

γ Histograms

- γ histograms provide more information than just pass/fail percentages
- Maximum γ indicates magnitude of agreement
- Mean γ may also indicate relative quality of plan

Conclusions

- γ distribution is a powerful tool that aids in the evaluation of complex dose distributions
- γ is sensitive to noise; appropriate review should be made when noise is present
- Criteria should be more appropriately defined: spatially varying

