

COMPASS

Ist die zweidimensionale Qualitätssichering der IMRT ausreichend ?

Hamburg, Feb 2011

Dr. Lutz Müller

COMPASS clinical collaborations & Application

Albrecht Dürer, wood engrave

Patient-specific Verification ?

© 2006

Commissioning & Validating COMPASS in a Clinical Environment

Vanderbilt-Ingram Cancer Center Radiation Oncology Department Jostin Crass, M.S.

Vanderbilt-Ingram Cancer Center

POLL QUESTION

 Raise your hand if your physician would understand this?

95% of Pixels with Gamma < 1.0

Vanderbilt-Ingram Cancer Center

POLL QUESTION

• What about this? Or this?

Vanderbilt-Ingram Cancer Center

Is 2D QA really *clinically* relevant ?

Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors^{a)}

Benjamin E. Nelms^{b)} Canis Lupus LLC and Department of Human Oncology, University of Wisconsin, Merrimac, Wisconsin 53561

Heming Zhen Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705

Wolfgang A. Tomé Departments of Human Oncology, Medical Physics, and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53792

Medical Physics, Vol. 38, No. 2, February 2011

[†] Using full density (film equivalent) planes and high resolution (1 mm x 1 mm) pixels

- * Max dose and D1cc (cord), mean dose (parotids, larynx), and D95 (CTV60)
- **‡** Comparison metrics were generated blind

In presence of clinically relevant errors, the QA procedure should result in ,fail'

This means to avoid 2 Situations:

QA procedure results in ,pass' but error is present (false negative)

QA procedure results in ,fail' but error is not present (false positive)

Correlation between 2D and clinical analysis

© 2006

Modified Beam Models (,wrong comissioning')

Low MLC Transmission Beam Model LTBM 1.94% -> 0.97%

High MLC Transmission Beam Model HTBM 1.94% -> 3.88%

Shallow Penumbra MLC Transmission Beam Model SPBM

4.5mm (Dmax) ->7.2 mm

Very Shallow Penumbra MLC Transmission Beam Model VSPBM

4.5mm (Dmax) ->9.2 mm

Effect of simulated errors (dashed curves)

© 2006

Conventional vs. ROI oriented 3D QA

Critical Patient Dose Metric vs. Conventional IMRT QA Passing Rate

FIG. 8. Generalized illustration of regions of false negatives (high passing rates despite critical patient dose errors) and false positives (low QA passing rates but with noncritical patient dose errors) when correlating critical patient dose errors to conventional IMRT QA Gamma passing rates. In this schematic, the critical dose error threshold is "E" and the standard acceptance criteria for Gamma passing rates is "C."

95% Volume Dose to Target

▲ 3%/3mm ○ 2%/2mm ○ 1%/1mm

Ľ.

Mean Contralateral parotid Dose

		Observed errors ^a (%) in DVH dose metrics for plans exceeding ≥95% passing rate ^b (3/3 and 2/2 criteria) and exceeding ≥90% passing rate ^b (1/1 criteria)				
Anatomy dose metric		3%/3 mm (N=83)	2%/2 mm (N=51)	1%/1 mm (N=12)		
Spinal cord	Range of % Errors	[-11.1, 15.7]	[-11.1, 15.7]	[-2.7, 3.3]		
D1cc	Mean absolute error ^c (%)	3.222	3.367	2.309		
Contralateral	Range of % errors	[-10.9, 12.0]	[-10.9, 12.0]	[-5.1, 5.7]		
Parotid mean	Mean absolute error ^c (%)	4.50	5.52	4.04		
Ipsilateral	Range of % errors	[-3.7, 4.1]	[-3.7, 4.1]	[-1.4, 1.7]		
Parotid mean	Mean absolute error ^c (%)	1.49	2.06	1.45		
Larynx mean	Range of % errors	[-15.9, 9.2]	[-7.6, 9.2]	[-3.2, 3.7]		
	Mean absolute error ^c (%)	5.66	5.32	2.50		
CTV D95	Range of % errors	[-3.7, 2.6]	[-2.2, 2.6]	[-1.6, 1.6]		
	Mean absolute error ^c (%)	1.26	1.66	1.30		

V. CONCLUSIONS

There is a lack of correlation between conventional IMRT QA performance metrics (Gamma passing rates) and dose differences in critical anatomic regions-of-interest. The most common acceptance criteria and published actions levels therefore have insufficient, or at least unproven, predictive power for per-patient IMRT QA. Moreover, the methodology of basing action levels on prior performance achievements using these conventional methods is unwarranted because meeting these criteria does not ensure that clinically acceptable dose errors.

Generations of electronic IMRT Dosimetry

1 st

Single fields, perpendicular

2nd Homogeneous phantom, composite

 3^{rd}

COMPASS

What is

?

NOTE: all these elements are PART of COMPASS, not only the transmission detector

© 2006

Detectors for COMPASS

MatriXX Detector @ Gantry Mount (SSD 762 or 1000 mm)

Gravity-based Angle Sensor to be mounted on gantry

© 2006

Compass: from Entrance Fluence to 3D Patient Dose

Beam model

Real Fluence

Dose engine (Collapsed Cone Superposition)

A Dose Engine...

Takes the incoming fluences

Takes the CT

Calculates the resulting dose distribution in patient anatomy

Copyright philips

Dürer again.Ray Tracing...

...Is not used on COMPASS, but full dose computation using approved Collapsed Cone algorithm

In case no dosimetric verification of the treatment plan is performed, at least an independent MUcalculation has to be performed for each field.

This can be done also using an independent, validated, sufficiently accurate 3D dose alorithm, which is independent from the original treatment planning system.

Auto Modelling

Auto modelling function	Affected parameters	Target function		
Electron energy spectrum	Electron spectrum parameters E and c, secondary electron source weights, direct electron source width and weight.	Depth dose curves from zero depth		
Energy spectrum and output factor corrections	Photon energy spectrum and output factor corrections	Depth dose curves deeper than 1 cm		
Primary and flattening filter sources	Primary and flattening filter photon sources: weight, widths, positions.	10 cm \times 10 cm field profiles for different depths.		
Beam profile corrections and off axis softening	Beam profile corrections and off-axis softening	Largest field x- and y-profiles for different depths.		
Output factor corrections	Value of the output factor corrections	Depth dose curves at the calibration point depth		

Note that for any given MLC position, it is assumed that the MLC-leaves and settings have the proper scale, so that their projected size onto the iso-center plane does not vary. If the projected size (or projected position) does not match the nominal values, this is regarded as a position calibration, and not as an off-set of the z-position.

Response – Prediction vs. Measurement

Response/control point (Plan vs. Measurement)

Dose measured

DVH and beyond

IMRT Quality Comparative Study

DESIGN AND IMPLEMENTATION OF AN ANTHROPOMORPHIC QUALITY ASSURANCE PHANTOM FOR INTENSITY-MODULATED RADIATION THERAPY FOR THE RADIATION THERAPY ONCOLOGY GROUP

ANDREA MOLINEU, M.S.,* DAVID S. FOLLOWILL, PH.D.,* PETER A. BALTER, PH.D.,*WILLIAM F. HANSON, PH.D.,* MICHAEL T. GILLIN, PH.D.,* M. SAIFUL HUQ, PH.D.,†AVRAHAM EISBRUCH, M.D.,‡ AND GEOFFREY S. IBBOTT, PH.D.* *Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX; Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA; ‡Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, MI

7%/4mm ca. 30 % fail !

3rd Generation. Dose in the Patient Anatomy

Delivery Error – 2mm Shift (Generation 2)

© 2006

Delivery error in RPC phantom case

COMPASS Report

	AJ33	▼ fx	=IF(R3	3 <ai< b="">33;"F</ai<>	PASS";"FAIL	")						
	HECCE F	GHIJKL	MNC) P	d R	stu v	W X	YZAA AB		A AL AJ	AK	AL
19 20 21	Plan lab	el: Teilhirn.0								· · · ·		
22					Indirectly			Allowed		max		
23	Dose				measured		Rel.	Rel.	Outcom	dev		
24	Volume	Type	Value	TPS	dose (%)	Difference	Difference	Diff [%]	е	dose (%)		
25 26	PTV	Average dose		5.135,14	5.139,69 cGy	-4,55 cGy	-0,09 %	* 3	PASS			
27	PTV	Volume at gamma	1			0,60 %Vol	0,60 %	2	PASS			
20 29 30	PTV	Average gamma				• 0,27	0,27	0,5	PASS			
31 32	Chiasma	Volume at dose [cGy]	500	0,00 %Vol	1,25	-1,25 %Vol	-100,00 %	0	FAIL			
33	Bulbus re	Volume at dose [cGy]	450	0,04 %Vol	1,62	-1,58 %Vol	-97,50 %	0	FAIL	2 PASS		
34 35	Bulbus li	Volume at dose [cGy]	450	0,00 %Vol	0	0,00 %Vol	n. def. %	• 0	FAIL	2 PASS		
36 37 38	Hirn	Volume at dose [cGy]	600	0,00 %Vol	0	0,00 %Vol	n. def. %	0	FAIL	1 PASS		
39	Hirn	Volume at dose [cGy]	500	28,24 %Vol	28,01	0,24 %Vol	0,84 %	3	PASS	33 PASS		
40 41 42	Hirn	Volume at dose [cGy]	450	39,57 %Vol	39,58	0,00 %Vol	-0,01 %	3	PASS	66 PASS		
43	Linsen	Volume at dose [cGy]	100	0,74 %Vol	2,34	-1,60 %Vol	-68,42 %	50	FAIL	2 FAIL		

© 2006

Prostate Case 3

iba Dosimetry

Data from Ramesh Boggula, Mannheim (submitted)

Para spinal Case 3

Plan was computed on a inhomogeneous thorax phantom

Data from Ramesh Boggula, Mannheim (submitted)

COMPASS vs. MONACO MC IMRT

EDR 2 Film

© 2006

Data from Ramesh Boggula, Mannheim (to be published)

COMPASS vs. MONACO MC IMRT

© 2006

Verification and clinical introduction of a QA system* in head and neck IMRT

*COMPASS (IBA Dosimetry)

Continuous Online Monitoring PAtient Safety System

Erik Korevaar Dept of Radiation Oncology University Medical Centre Groningen The Netherlands

Purpose

- 1. Clinical introduction of COMPASS
- 2. COMPASS QA results identify 'bad' treatments as in standard (film based) QA?
- 3. Machine QA test correlates with patient IMRT QA?

MLC geometry: Strip test 9 adjacent 1.8x20cm² MLC segments

Y position [cm]

COMPASS QA vs Film QA

Gamma index correlation

COMPASS QA vs Film QA Gamma index correlation

COMPASS QA vs Film QA Gamma index correlation

COMPASS QA in patient CT

DVH: spinal cord (green), planning target volumes (purple, red)

Gamma index (orange: $\gamma > 1$)

UMCG

Why do we do this? Patient 301..

spinal cord (green), planning target volumes (purple, red)

Conclusions

- COMPASS based QA agrees with film based QA
- Machine QA test correlates with patient QA
- In clinical use since February 2009
- IMRT QA time reduced by half

July 1st , 2010 (Dr. Erik Korevaar)

- We have verified about 140 patients more, so the total now is roughly **220** patients.
- From january 2010, we started to use COMPASS as an independend dose calculation tool
- in a selection of treatments a measurement with the MatriXX detector + COMPASS is done
- In the rest of the treatment plans dose is computed with COMPASS without a measurement. This made the QA process more flexible and it is not a limiting factor in the number of new patients starting IMRT treatment every week.
- The number of patients treated with 'full blown IMRT' has roughly doubled.

PMB <u>55</u> (2010) 5619-5633

IOP PUBLISHING

PHYSICS IN MEDICINE AND BIOLOGY

Phys. Med. Biol. 55 (2010) 5619-5633

doi:10.1088/0031-9155/55/19/001

Experimental validation of a commercial 3D dose verification system for intensity-modulated arc therapies

Ramesh Boggula¹, Friedlieb Lorenz^{1,2}, Lutz Mueller³, Mattias Birkner³, Hansjoerg Wertz^{1,4}, Florian Stieler¹, Volker Steil¹, Frank Lohr¹ and Frederik Wenz¹

¹ Department of Radiation Oncology, University Medical Centre Mannheim, Mannheim, Germany

² Southern Blood and Cancer Service, Dunedin Public Hospital, Dunedin, New Zealand ³ IBA Dosimetry, Schwarzenbruck, Germany

E-mail: hansjoerg.wertz@umm.de

