

3D IMRT Verification in Patient Anatomy

AK IMRT Bamberg April 2010

Dr. Lutz Müller

Patient-specific Verification ?

Generations of electronic IMRT Dosimetry

1 st

Single fields, perpendicular

2nd Homogeneous phantom, composite

3rd

COMPASS

2nd Generation

This is a Piece of **Plastic** and 5 Human Being)

How to assess dose to the patient for IMRT?

Invasive Method: place a film in the patient

What is

?

NOTE: all these elements are PART of COMPASS, not only the transmission detector

Compass: from Entrance Fluence to 3D Patient Dose

Beam model

Real Fluence

2 Detectors for COMPASS

MatriXX

Transmission Detector

- 1020 ion chambers
- Pre-treatment verification
- Verification of systematic errors
- Display of 3D dose distribution in patient anatomy

- 1600 ion chambers
- Pre-treatment + online verification
- Dose distribution measurement during patient treatment
- Systematic and random errors
- Display of 3D dose distribution in patient anatomy

2 detectors for COMPASS

MatriXX

Transmission

New Transmission Detector

Wireless data transmission

Battery operated

Minimal clearance reduction

The Beam Model (RaySearch)

A Beam Model...

Is a ,virtual accelerator', which allows fluence and spectrum calculation from MU number and collimator settings

In order to do so...

The model needs to be commissioned, i.e. has to ,learn' features of specific accelerator and energy

Commissioning of COMPASS

Auto Modelling

Auto modelling function	Affected parameters	Target function
Electron energy spectrum	Electron spectrum parameters E and c, secondary electron source weights, direct electron source width and weight.	Depth dose curves from zero depth
Energy spectrum and output factor corrections	Photon energy spectrum and output factor corrections	Depth dose curves deeper than 1 cm
Primary and flattening filter sources	Primary and flattening filter photon sources: weight, widths, positions.	10 cm \times 10 cm field profiles for different depths.
Beam profile corrections and off axis softening	Beam profile corrections and off-axis softening	Largest field x- and y-profiles for different depths.
Output factor corrections	Value of the output factor corrections	Depth dose curves at the calibration point depth

Note that for any given MLC position, it is assumed that the MLC-leaves and settings have the proper scale, so that their projected size onto the iso-center plane does not vary. If the projected size (or projected position) does not match the nominal values, this is regarded as a position calibration, and not as an off-set of the z-position.

Fluence Correction: 1. Residual Response

Response Prediction and Comparison

Dose engine (Collapsed Cone Superposition)

A Dose Engine...

Takes the incoming fluences

Takes the CT

Calculates the resulting dose distribution in patient anatomy

Copyright philips

Planned vs. Reconstructed Dose

IMRT Quality Comparative Study

DESIGN AND IMPLEMENTATION OF AN ANTHROPOMORPHIC QUALITY ASSURANCE PHANTOM FOR INTENSITY-MODULATED RADIATION THERAPY FOR THE RADIATION THERAPY ONCOLOGY GROUP

ANDREA MOLINEU, M.S.,* DAVID S. FOLLOWILL, PH.D.,* PETER A. BALTER, PH.D.,*WILLIAM F. HANSON, PH.D.,* MICHAEL T. GILLIN, PH.D.,* M. SAIFUL HUQ, PH.D.,†AVRAHAM EISBRUCH, M.D.,‡ AND GEOFFREY S. IBBOTT, PH.D.* *Department of Radiation Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX; Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA; ‡Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, MI

7%/4mm ca. 30 % fail !

3rd Generation. Dose in the Patient Anatomy

Delivery Error – 2mm Shift (Generation 2)

Delivery error in RPC phantom case

Collecting the Gantry Angle Information

Starting with R2.0 Compass allows to track the gantry angle while measuring the treatment plan.

Gravity-based Gantry Angle Sensor to be mounted on gantry.

Plane View

Response/control point (Plan vs. Measurement)

Statistical evaluation

G COMPASS - BT_test - 25.08.2009*

_ 7 🗙

	AJ33	▼ fx	=IF(R3	3 <ai< b="">33;"F</ai<>	PASS";"FAIL	")						
	HECCE F	GHIJKL	MNC) P	d R	stu v	W X	YZAA AB		A AI AJ	AK	AL
19 20 21	Plan lab	el: Teilhirn.0										
22					Indirectly			Allowed		max		
23	Dose				measured		Rel.	Rel.	Outcom	dev		
24	Volume	Type	Value	TPS	dose (%)	Difference	Difference	Diff [%]	е	dose (%)		
25 26	PTV	Average dose		5.135,14	5.139,69 cGy	-4,55 cGy	-0,09 %	* 3	PASS			
27	PTV	Volume at gamma	1			0,60 %Vol	0,60 %	2	PASS			
20 29 30	PTV	Average gamma				• 0,27	0,27	0,5	PASS			
31 32	Chiasma	Volume at dose [cGy]	500	0,00 %Vol	1,25	-1,25 %Vol	-100,00 %	0	FAIL			
33	Bulbus re	Volume at dose [cGy]	450	0,04 %Vol	1,62	-1,58 %Vol	-97,50 %	0	FAIL	2 PASS		
34 35	Bulbus li	Volume at dose [cGy]	450	0,00 %Vol	0	0,00 %Vol	n. def. %	• 0	FAIL	2 PASS		
36 37 38	Hirn	Volume at dose [cGy]	600	0,00 %Vol	0	0,00 %Vol	n. def. %	0	FAIL	1 PASS		
39	Hirn	Volume at dose [cGy]	500	28,24 %Vol	28,01	0,24 %Vol	0,84 %	3	PASS	33 PASS		
40 41 42	Hirn	Volume at dose [cGy]	450	39,57 %Vol	39,58	0,00 %Vol	-0,01 %	3	PASS	66 PASS		
43	Linsen	Volume at dose [cGy]	100	0,74 %Vol	2,34	-1,60 %Vol	-68,42 %	50	FAIL	2 FAIL		

Reporting and Archiving (India)

COMPASS Report

Data from Fujio Araki, Kumamoto university

Prostate Case 3

Data from Ramesh Boggula, Mannheim (submitted)

Para spinal Case 3

Plan was computed on a inhomogeneous thorax phantom

Data from Ramesh Boggula, Mannheim (submitted)

COMPASS vs. MONACO MC IMRT

5 Prostate Plans on Inhomogeneous Pelvic Phantom EDR 2 Film

Bata from Ramesh Boggula, Mannheim (to be published)

COMPASS Present and **Future**

Integrated Imaging Systems

Integrated Imaging System

© 2006

fraction-to fraction monitoring of organ position AND shape

Data from X.A.Li et al., Medical Collegue of Wisconsin

CTV Volume and Shape change

Data from X.A.Li et al., Medical Collegue of Wisconsin

© 2006

Cone beam CT import

(Research Software) DRET Workstation - RaySearch Laboratories All : DoseTracker - Demo - [Treatment Assessment Tool] -----Ele Idit Yew Optimization Dase BOI Geometry Window Help Experimental . e x ~ | 剤 | 加 かかりな つ ──── 」 | (生ますまき) かり なむ び(きかゆ 皮) 闇 単図 ★★★★ DVH Dose Difference Sole By-Side Patient Data View ٠ Patent Data New ٠ • ٠ · Fraction 4 Nominal dose Fraction dose P Scale Dose | Show compared ROEs | Show all ROE represent 12 Scale Dose 12 Show compared ROEs 17 Show at ROI revenuent Transversal .* Position (cm): 1.13-90.17 135.52 Value IcOgl: 502.52 Position (cm): 21.07 -66.86 135.52 Value (x0y): 0.03 1000 7000 1000 9000 4000 9009 7589 8009 6809 4809 1009 1009 1009 Slice Zoom visition (cm): 1.85 86.94 143.36 (a.05 (0.07): 0.01 Position (cm): -1.85--65.40 123.29 Value (cGy): 0.00 Sagittal ٠ 604 1000 1900 1900 1000 4000 1000 3000 3000 500 1080 7080 1080 1080 4080 2080 2080 2080 Sice Zoon Ready NUM

CT

© 2006

Variation due to bladder filling (fraction 4)

Initial manual countouring

Draw a spline to help the algorithm finding the border of the bladder, especially where it is going outside of the higher

quality image area.

Automatic adaptation

Rigid registration (Prostate)

Adaptation of prostate is done in the same manner. Only rigid movements however since really hard to identify by grayscale. Need personal clinical knowledge to deform by your own.

© 2006

3D ROI Adaptation

All adaptation work on the full 3d volume description of the ROI's

© 2006

Cumulative DVH

Fraction 4

Planned

COMPASS

After all fractions

© 2006

Commissioning & Validating COMPASS in a Clinical Environment

Vanderbilt-Ingram Cancer Center Radiation Oncology Department Jostin Crass, M.S.

POLL QUESTION

 Raise your hand if your physician would understand this?

95% of Pixels with Gamma < 1.0

POLL QUESTION

• What about this? Or this?

- Validate our TPS
- Validate COMPASS computation algorithm
- Validate COMPASS prediction algorithm
- Validate COMPASS reconstruction algorithm

- Validate COMPASS prediction algorithm
 - Compare COMPASS predicted response to response measured on MatriXX
 - Difference Histogram
 - ~96% of the pixels are within $\pm 1.5\%$ Difference
 - Compared Field by Field for complete validation

• Validate COMPASS reconstruction algorithm

• Validate COMPASS reconstruction algorithm

COMPASS Pros & Cons

Cons

- Beam Modeling
 - should be more automated and intuitive
 - Improve documentation
- Need to integrate OmniPro IMRT functionality
- CT numbers add to another uncertainty category

COMPASS Pros & Cons

- Pros
 - Intuitive GUI
 - Simple Measurement Setup
 - TRIGGER MODE is AWESOME
 - Customizable Reports
 - Dose Visualization
 - Physician Friendly Analysis

A Novel 3D Approach to Rotational Verification

Anees Dhabaan, Ph.D. Eric Elder, Ph.D.

Department of Radiation Oncology

Method of Evaluating COMPASS Comparison Studies Between TPS, Film, MatriXX and COMPASS

Film

MatriXX

Method of Evaluating COMPASS

- 1. Gafchromic Film Dosimetry
- 2. Conventional Chamber array (MatriXX)
- 3. TPS

compared to

Planar dose extracted from COMPASS indirectly measured dose

Planar Dose

Plan on a phantom

Film vs. TPS

MatriXX vs. TPS

COMPASS vs. TPS

MatriXX vs. COMPASS

Results 99% of pixels have gamma index <1.0 Gamma 3%, 3 mm

Clinical Example

Clinical Example - Coronal

Compass-indirectly measured dose

TPS

Clinical Example - Coronal

Clinical Example - Axial

Clinical Example - Sagittal

Conclusion

- Provides 3D dose distribution within patient anatomy allowing detailed evaluation of plan.
 Directly identifies discrepancies between plan and delivery.
 Independent verification of treatment planning system
 - system.

Verification and clinical introduction of a QA system* in head and neck IMRT

*COMPASS (IBA Dosimetry)

Continuous Online Monitoring PAtient Safety System

Erik Korevaar Dept of Radiation Oncology University Medical Centre Groningen The Netherlands

Purpose

- 1. Clinical introduction of COMPASS
- 2. COMPASS QA results identify 'bad' treatments as in standard (film based) QA?
- 3. Machine QA test correlates with patient IMRT QA?

Methods

- 1. MLC test geometries
- 2. Head and neck IMRT test cases
 - 22 treatments on two 'twin' accelerators
 - Gamma index evaluation*: planned vs. delivered dose γ_{mean} < 0.5 0.5-0.6 > 0.6 OK rejected

*Low et al. Med. Phys. 25 (1998)

MLC geometry: Strip test 9 adjacent 1.8x20cm² MLC segments

Y position [cm]

Head and neck IMRT case #1 Gamma index (3%/3mm)

 $\gamma_{\text{mean}} = 0.53$

Film QA QA

COMPASS

COMPASS QA vs Film QA

Gamma index correlation

COMPASS QA vs Film QA Gamma index correlation

COMPASS QA vs Film QA Gamma index correlation

COMPASS QA in patient CT

DVH: spinal cord (green), planning target volumes (purple, red)

Gamma index (orange: $\gamma > 1$)

UMCG

Conclusions

- COMPASS based QA agrees with film based QA
- Machine QA test correlates with patient QA
- In clinical use since February 2009
- IMRT QA time reduced by half

Acknowledgements

- University Medical Center Groningen University of Groningen, Department of Radiation Oncology Groningen, The Netherlands
- D. Wauben, P.C. van der Hulst, J.A. Langendijk, A.A. van 't Veld

- IBA Dosimetry GmbH Schwarzenbruck, Germany
- RaySearch Laboratories Stockholm, Sweden

Clinical Validation of COMPASS-System for Verification of Intensity Modulated Fields

<u>S. Heyden¹</u>, M. Kretschmer¹, F. Würschmidt¹, L. Müller²

¹Radiologie & Radioonkologie im Struenseehaus, Hamburg-Altona

²IBA-Dosimetry, Schwarzenbruck

Materials and Methods

Comissioning of COMPASS

Determination of dosimetric base data for 6MV photon beam with a water phantom. The LINAC used was ONCOR Impression (Siemens).

Validation of COMPASS

Comparison of output factors, depth dose curves and lateral profiles vs. Base data for simple quadratic fields

Similation of delivery errors by modification of planning data (photon energy variation, MLC and collimator positions).

Clinical routine usage of COMPASS for 4 head-and-neck plans. The plans have been evaluated with COMPASS and compared to dose distributions from the planning system KonRad (Siemens)

All measurements have been carried out using the ion chamber array MatriXX (IBA-Dosimetry), using a gantry holder.

Results

It could be shown that results both for COMPASS recalculated plans as well for COMPASS measurement based reconstruction yielded good agreement with base data for output factors, lateral profiles and depth dose curves.

Intentionally applied modifications to the plans have shown that leaf displacements down to ± 1 mm could be identified unambigously.

A change in photon energy and collimator position could be detected for field sizes $> 10 \times 10 \text{ cm}^2$.

Leaf displacements for2x2cm², 5x5cm² und 10x10cm² fields. The arrows indicate the first appearance of the manipulated leaf

Results

The comparison between COMPASS recalculated and measured dose distributions for target and OAR volumes for 6 MV head-and-neck plans shows good agreement with the TPS distributions, both for average doses and DVH slopes. Discrepancies were noticeable at transition areas to air cavities and are caused by different dose computation algorithms (KonRad=Pencil-Beam, COMPASS=Convolution-Superposition)

COMPASS-recalculation vs. KonRad

Average dose [Gy]

ROI	KonRad	COMPASS recalculated	Rel. Diff [%]	Abs. Diff [Gy]
Tumor bed	50.35	50.60	-0.50	-0.25
PTV	49.62	49.36	0.54	0.27
Parotis	44.85	44.80	0.10	0.05
Spinal cord	24.71	23.25	6.31	1.47

COMPASS-measurement vs. KonRad

Average dose [Gy]

ROI	KonRad	COMPASS measurement	Rel. Diff [%]	Abs. Diff [Gy]
Tumor bed	50.35	50.24	0.21	0.11
PTV	49.62	49.18	0.65	0.32
Parotis	44.85	45.54	-1.52	-0.69
Spinal cord	24.71	24.09	2.61	0.63

Summary

The dosimetric validation of COMPASS shows good agreement to the base data

Leaf displacements in the dose difference plot can be identified unambiguously from ± 1 mm on

Comparison with IMRT-plans shows good agreement for both average target doses and DVH slopes

Time spent for plan QA (hybrid plan generation with KonRad, recalculation, measurement, evaluation) can be reduced from 3:30 h to about <u>1 h</u> using COMPASS

