VMAT Mannheim

F. Lohr

Und

F. Stieler, D. Wolff, HJ. Wertz, L. Jahnke, J. Fleckenstein, F. Molina, M. Polednik, F. Schneider, V. Steil

- ERGO++ delivered in Sept. 2007, current version 1.7.2, DMS 2.6.2
 - Class solutions of treatment of pelvis, prostata and spinal cords developed
- **Desktop 7.01** installed in April 2008 (nonclinical version)
- Mosaiq 1.5 installation in September 2008 (for VMAT delivery)
- **Desktop 7.01** installed in December 2008 (clinical version)
- Mosaiq 1.6 installation in December 2008 (clinical Version for VMAT delivery)
- Mosaiq 2.0 installation in August 2009
- Integrity Clinical Release pending
- MLCi2 Installation Pending
- First Patient treated clinically in December 2008 based on ERGO++
- **MONACO** clinical for step and shoot IMRT since July 2009 (post 1y Hyperion)
- MONACO VMAT clinical since 29.1.2010

Plan comparisons - Material and Methods

- Anal, prostate and paraspinal cases
- Treatment techniques plan comparison:
 - MLC based IMRT
 - Sequential Tomotherapy
 - 3D conformal radiation therapy (anal cases)
 - VMAT
- Material
 - Elekta Synergy 6MV (2x40 leaves / 1cm)
 - NOMOS Multivane Collimator (MIMiC / 1cm)
- Treatment planning systems (TPS)
 - VMAT → ERGO++ 1.7.1
 - IMRT → Hyperion 2.2.5.i (XVMC / PB)
 - MIMiC → CORVUS 6.3 (Pencil Beam)
 - 3D → Masterplan 3.0 SP1

Anal Cancer

Anal Cancer – DVH's

Stieler et al., Radiation Oncology, 2009

Anal Cancer – Different TPS

VMAT 2 Rot: ERGO++

3D-RT: Masterplan

IMRT PB: Corvus

IMRT PB: Hyperion

IMRT MC: Hyperion

Anal Cancer – Results

	3D-CRT	VMAT '2 Rot'	IMRT (MC Hyperion)	IMRT (PB Hyperion)	IMRT (PB Corvus)
Homogeneity index (HI 36)	1.06±0.02	1.11±0.02	1.11±0.08	1.10±0.02	1.15±0.03
Conformality index	2.00±0.16	1.39±0.09	1.30±0.02	1.26±0.05	1.33±0.21
Monitor Units	225±11	268±19	748±193	477±84	1260±172
Mean Treatment Time (without positioning)	3 Min 40	4 Min 50	10 Min 10	9 Min 30	9 Min 35
V _{Tissue 10% PD}	10739 cm³ ≡ 48.8%	10463 cm³ ≡ 47.6%	10806 cm³ ≡ 48.1%	10347 cm³ ≡ 46.0%	10591 cm³ ≡ 47.5%
V _{Tissue 30% PD}	8187 cm³ ≡ 37.3 %	7674 cm³ ≡ 34.9 %	7593 cm³ ≡ 33.8%	7199 cm³ ≡ 32.0%	7874 cm³ ≡ 35.3%
V _{Tissue 50% PD}	6052 cm³ ≡ 27.6 %	5089 cm³ ≡ 23.1%	4203 cm³ ≡ 18.7%	3971 cm³ ≡ 17.7%	5186 cm³ ≡ 23.2%
V _{Tissue 70% PD}	3428 cm³ ≡ 15.6 %	2734 cm³ ≡ 12.4 %	1939 cm³ ≡ 8.6%	1933 cm³ ≡ 8.6%	2612 cm³ ≡ 11.7%
V _{Tissue 95% PD}	982 cm³ ≡ 4.5 %	208 cm³ ≡ 0.9 %	14 cm³ ≡ 0.0%	0 cm³ ≡ 0.0%	53 cm³ ≡ 0.2%
D 95% Vol Tissue	1.97 Gy = 5.46%	0.75 Gy ≡ 2.09%	0.35 Gy ≡ 0.98%	0.31 Gy ≡ 0.85%	0.52 Gy ≡ 1.45%
D _{95% Vol PTV}	34.09Gy ≡ 94.7%	33.84 Gy ≡ 94%	33.05 Gy ≡ 91.8%	32.95 Gy ≡ 91.54%	32.33 Gy ≡ 89.8%

Wolff et al., Strahlenther Onkol, submitted

Wolff et al., Strahlenther Onkol, submitted

γ-Index / Absolute Analysis

Exemplary γ-Index

Numerical γ-Index (pass criteria over all cases)

γ-Index 1% / 1mm: $42.8 \pm 10.9\%$ γ-Index 2% / 2mm: $74.5 \pm 9.3\%$ γ-Index 3% / 3mm: $90.2 \pm 4.9\%$ γ-Index 5% / 5mm: $99.1 \pm 0.7\%$ γ-Index 5% / 10mm: $100 \pm 0.0\%$ (set a default)

<u>Absolute Dose</u> of Ion Chamber $D_{mean} = 1.84 \pm 2.06 \%$ (max: +4.0% min: -2.4%)

Prostate Cancer

Prostata carzinoma – VMAT rotation strategies

Wolff et al., Radiother Oncol, 2009

VMAT 1 Rot:

• 1x 360° rotation with shielded OAR in front of target

VMAT 1,5 Rot.

- 1x360° rotation on target
- 2x100° rotation on target with shielded OAR

Wolff et al., Radiother Oncol, 2009

Sagittal dose distributions

			VMAT 2x		MIMiC	3D
D _{mean Target}	[Gy]	75.97 ± 0.07	75.93 ± 0.06	75.73 ± 0.14	75.89 ± 0.3	76 ± 0.03
D _{99% Target}	[Gy]	69.62 ± 0.84	69.74 ± 1.0	66.46 ± 1.9	66.13 ± 5.4	71.02 ± 0.58
D _{95% Target}	[Gy]	71.59 ± 0.53	71.70 ± 0.63	70.51 ± 0.91	69.79 ± 3.52	73.42 ± 0.37
D _{mean Rectum post}	[Gy]	38.57 ± 2.38	38.75 ± 2.39	34.89 ± 1.81	31.85 ± 2.12	55.43 ± 6.28
D _{mean Rectum ant}	[Gy]	61.59 ± 4.41	60.29 ± 3.34	53.99 ± 3.24	50.69 ± 3.29	66.33 ± 5.96
V _{tissue 70%}	[cm ³]	505 ± 83	482 ± 29	284 ± 40	337 ± 73	414 ± 35
V _{tissue 50%}	[cm ³]	1231 ± 177	1155 ± 91	933 ± 172	869 ± 154	1993 ± 551
V _{tissue 30%}	[cm ³]	3438 ± 494	3340 ± 507	3414 ± 732	2819 ± 630	3061 ± 619
V _{tissue 10%}	[cm ³]	6729 ± 1364	6703 ± 1407	5746 ± 1294	6341 ± 1905	4506 ± 956
TTT	[min]	1.8 ± 0.1	3.7 ± 0.2	6 ± 1	12 ± 2	2.5 ± 0.1
MU	1	386 ± 29	371 ± 34	544 ± 56	2714 ± 697	252 ± 8
CI _{RTOGmod}		1.51 ± 0.16	1.45 ± 0.14	1.23 ± 0.16	1.5 ± 0.23	1.46 ± 0.06
HI		1.11 ± 0.03	1.09 ± 0.03	1.1 ± 0.02	1.19 ± 0.07	1.04 ± 0.01

Wolff et al., Strahlenther Onkol, submitted

QA measurements - profiles

QA measurements

was calculated for each plan , here exemplary for pat 8

Results of the measurements

- absolute dose of ion chamber $\Delta_{\text{mean}} = 1,64\% \pm 1,14 \text{ (max: +3,7\% min: -1,25\%)}$
- good relative agreement between measured and calculated in film measurements
- Mean pass criteria for γ-Index:

1% / 1mm	$40,9\% \pm 8,7$	pass	pixel (green)
2% / 2mm	69,3% ± 10,4	pass	pixel (green)
3% / 3mm	84,8% ±	8,0	pass pixel (green)
5% / 5mm	97,2% ±	2,7	pass pixel (green)
10% / 5mm	is set to 100%		

Wolff et al., Radiother Oncol, 2009

Second clinical patient with 2 rotations

545MU 2,4Gy PTV / 2,9Gy Prostata 3min beam on time

Wolff et al., Strahlenther Onkol, submitted

In vivo dosimetry

9 measurements in first patient in the high dose region: All <2.5% (except 2) deviation from calculation

Paraspinal Cancer

VMAT for Reirradiation of Paraspinal Tumors

	3D-PA	3D-Wedge	IMRT 5B	IMRT 7B	VMAT
HI40	-	-	1.18±0.07	1.17±0.06	1.14±0.07
СІ	-	-	1.74±0.32	1.85±0.21	1.96±0.36
MU	240±21	553±136	844±133	877 ±102	785±92
Time	25±2 sec	88±7 sec	348±72 sec	472±82 sec	289±69 sec
C _{95%PD}	0% / 47.92±9.89%	0% / 55.33±1.93%	82.59±4.56%	81.22±4.37%	81.28±4.25%
SC	26.11±0.33Gy	25.98±0.06Gy	26.91±0.93Gy	25.67±1.55Gy	23.54±2.35Gy

Stieler et al. submitted

Stieler et al., submitted

Research: Spinal cord with 2 rotations

Stieler et al., submitted

Clinical: Spinal cord with 2 rotations

- First clinical spinal cord patient with VMAT
- Delivery time: 3 minutes 10 seconds
- MU: 597 (2Gy fraction dose)
- QA with EDR2 films / ion chamber:
 - Absolute deviation: +0.19%

Monaco VMAT

IMRT TPS Monaco

Options:

- > XVMC calculation for real dose distribution (dose-to-medium)
 - Voxel based
 - Gantry head is "black box"
 - New clinical prescriptions to OAR have to be implemented
- Biological Optimization
 - Is model-based (development through evidence-based trends on cell responses to radiation)
 - Use of Equivalent Uniform Dose (EUD)
 - Multiple cost function
 - e.g. for serial/parallel organs
- Powerful Sequencer
 - Lower number of Segments and MU

	Туре	Applied To	Biological Parameter	loconstraint	Reference Dure	Description
Poinson Cell Kill	Objective	Target	Cell Southrity	EUD / Rx Dose	Proception (Gy)	Biological Cost Function
Serial Complication Model	Constraint or Secondary Objective	GAR	Power Law Exponent (k)		EUD (Oj)	Biological Cost Function
Parallel Complication Model	Constraint or Secondary Objective	OAR	Power Law Exponent (8)	Mean Organ Danage (%)	Reference Dose	Biological Equivalent of Overdose Valuese Constraint
Quadratic Overslore	Constraint	Target / OAR		RMS Dose Excess (Gy)	Maximum Dose (Gy)	Physical Constraint
Quadratic Underdotage	Constraint	Target		RMS Dose Deficit (Oy)	Maximum Dose (Gy)	Physical Countraint
Maximum Doon	Constraint	Taget/ OAR			Maximum Dose (Gy)	Physical Communit
Overdure Volume Constraint (DVH)	Constraint or Secondary Objective	OAR		% Volume > Thembold Dose (%)	Threshold Dose (Gy)	Physical DVH Constraint for OAR
Contraint (DVH)	Constraint	Target		% Volume < Threshold Dose (%)	Threshold Dose (Gy)	Physical DVH Constraint for Target

Monaco VMAT

First treated Monaco VMAT patient in Mannheim

VMAT Prostate

- PTV 11Gy with integrated boost up to 15Gy
 - (after previous conformal RT 60Gy without integrated boost → cummulative dose = 70/75Gy)
- Rectum posterior: 50% volume received less than 50% PD
- Single rotation
- Treatment time: 4 minutes 20 seconds
 - Estimated treatment time with Integrity: ~3 minutes
 - Integrity and MLCi 2: ~2.5 minutes
- 724 monitor units

QA with IBA Matrixx and gantry holder

H&N

Clica Mode Elect 0.05 C Fall 27.10 C Click 0.17 C cer Junp to Point ...

19 W/L Alleyter Primary Shalipset - W1 1455 2 L 07 2 🔂 Durium -

Bildgesteuerte, PET-gestützte Strahlentherapie beim Lungenkarzinom Zielvolumenminimierung und Bestrahlungsoptimierung bei ungünstigem Tumor-zu-Lungenvolumenverhältnis

1. Zielvolumendefinition/Minimierung auf Basis von funktioneller Bildgebung (PET-CT)

Prostata

Magen

Bildgesteuerte, PET-gestützte Strahlentherapie beim Lungenkarzinom Zielvolumenminimierung und Bestrahlungsoptimierung bei ungünstigem Tumor-zu-Lungenvolumenverhältnis

1. Zielvolumendefinition/Minimierung auf Basis von funktioneller Bildgebung (PET-CT)

VMAT

Augenlid

QA for VMAT

Linac tests for VMAT

MU Check Add up MU per gantry angle

Linac tests for VMAT

Dynamic Dose Rate Check Dose rate per gantry angle

Gantry Speed Check Gantry Speed per gantry angle

QA for VMAT

Boggula et al, submitted

So far

- Extended Linac QA according DIN 6847-5
- Full patient plan verification using EDR2 film and ion chambers
- In vivo dosimetry during patient delivery for prostate cancer

• Future:

- IBA MatriXX 2D-arry detector for patient plan verification
 - MatriXX Evolution with gantry angle sensor and multicube phantom (Comparison of measurement to TPS)
 - MatriXX Evolution with gantry holder and Compass software (independent TPS using measured fluences)
- IBA transmision detector for online plan verification

IBA Multicube

IBA Compass

IBA transmision detector

Treatment Plan QA: Typical workflow

1.- CT: acquire images

3.- Deliver planned treatment

4.- Evaluate Plan vs Measurements

Medizinische Fakultät Mannheim der Universität Heidelberg Universitätsklinikum Mancheim

MatriXX - Residual angular dependence

Dose Reconstruction - COMPASS

Reconstructs the dose based on delivered fluence

Linac + COMPASS setup

Thank you for your attention

and don't rotate too fast ©