

New approach to IMRT optimization: clinical experience with "Monaco" (CMSsoftware/Elekta)

Irina Fotina MSc.

Department of Radiotherapy, Medical University Vienna/AKH Wien, Vienna, Austria

Commissioning of TPS in the Department of Radiotherapy, Medical University Vienna/AKH Wien

- Dosimetric verification of MC algorithm
- IMRT comparison study advantage of biological cost functions over traditional dose-volume approach:
 - EUD-based formalism of cost functions
 - Combination of "hard constraints" and "objectives" for the control of optimization process
 - Advanced structure control
 - Sensitivity analysis tool
- Since June 2008 commissioned for the clinical routine use
- □ Now Monaco V 1.0.2

Dosimetric verification of MC algorithm

Need for high accuracy in dose calculation for advanced treatment techniques

- Small fields as used for SBRT, IMRT, dose painting,
- Low density regions are still challenging
- Biological modeling
- Everlasting competition between speed and accuracy
- Is there an advantage of (commercially available) MC methods over advanced kernel algorithms?

Commercially available in Monaco TPS Monte Carlo algorithm is able to predict the dose in heterogeneous media and at interfaces slightly more accurate than advanced kernel algorithms.

IMRT optimization with Monaco

- **Typical Treatment Goals:**
- Sufficient target dose
- Don't exceed acceptable doses in OARs
- Target dose should be conformal spare normal tissue
- No large or excessive hot spots in target

These goals need to be communicated to the planning algorithm in a concise, comprehensive, transparent and numerically expedient manner.

Biological formalism of the cost functions in Monaco

EUD-based formalism

EUD represents dose that is equivalent (*in terms of the same level of the probability of a local control or complication*) to a given non-uniform dose distribution.
EUD-based cost functions allow exploration of a larger solution space than dosimetry-based objective functions (Wu Q.,Mohan R. et al 2002)

Equivalent Uniform Dose (EUD)

Targets

- **Poisson Cell Kill Cost Function**
- Primary cost function for targets, treated as an objective
- Required parameters: *Prescription* in terms of EUD, the desirable dose for the structure and *Cell sensitivity* default value of 0,25

Based on Poisson Dose Response Model (Munro,Guilbert 1961)/TCP model (W.Tome,S.Bentzen 2005)

Biological formalism of the cost functions in Monaco

OARs -Biological volume effect

- Serial Response organ behaves like a chain
- Volume effect is small
- Partial loss of function equal to a total loss of function
- □ Spinal cord, peritoneum, nerves

Serial Complication Model Cost Function

Preferred constraint for serial OARs Power law exponent k=0,15*D50 EUD – value in between of Dmax (k is high) and mean dose (k=1)

OAR	K value
Rectum	12-14
Spinal cord	12-14
Optic nerve	12-16
Inner ear	12
Brainstem	10-12
Larynx	6-8
Esophagus	10-12
Bladder	8-10

The values are the combination of recommended by CMS values and data obtained from practical experience in AKH Vienna. General rule: higher Kvalue implies higher penalty on the high dose region of the DVH curve

Biological formalism of the cost functions in Monaco

- Parallel Response organ behaves like a rope
- Partial loss of a function is tolerable
- Volume effect is large
- Kidney, liver, lung

Parallel Complication Model Cost Function

Preferred constraint for parallel OARs Reference dose (EUD), Mean organ damage (%), power law exponent k

OAR	K-value			
Lung	3-3,5			
Parotid	3,5 -3.9			
Kidney	2,1			
Heart	2,5 -3			
Liver	3,5 -4			
<i>Mean damage: 20-50%</i>				

The values are the combination of recommended by CMS values and data obtained from practical experience in AKH Vienna.

General rule: higher K-value implies higher penalty for the control of the mean dose

IMRT optimization with Monacopractical examples...

- Head-and-neck case
- Age: 69 y.o.
- Tumor location: right tonsil + parapharyngeal space
- Stage: T3N2aM0
- CT+PET data are available
- Radical external beam radiotherapy –
- IMRT (simultaneous integrated boost)
- □ Chemotherapy concurrent Cis-Pt or Cis-Pt-5FU
- Prostate case
- Anus case
- Other indications for the IMRT planning in AKH gyn. cervix IMRT, pleura

Target and structure delineation

IMRT treatment planning

- 7 equidistant beams (gantry:90-141-192-243-294-345-39) – parotid sparing technique
- 10 MV Elekta Synergy Platform linac, sMLC (40 pairs, 1 cm leaf width)
- Isocenter PTV 70 Gy
- TPS Monaco 1.0.2 (CMS software/Elekta):
- XVMC dose calculation
- 3 mm dose calculation grid, 3% MC variance
- Min. segment size 4 cm2, Min.MU per segment – 4 MU

Prescription and advanced structure control

Results:

/&CTV 50Gy PTV&CTV 60Gy PTV&CTV 70Gy

PTV coverage with 95% of the respective prescribed dose level: PTV 70 Gy – 98,8% PTV 60 Gy – 96,8% PTV 50 Gy - 95,6% OARs: Max dose to spinal cord: 43,6 Gy Max dose to brainstem: 43,1 Gy Mean dose to cont. parotid: 21,2 Gy Abs. max dose:in CTV tumor -76,3 Gy -109%, in normal tissue – 74,5 Gy - 106% of

the prescr. dose 93 Segments, 739 MU

RT after transurethral prostate resection; Prescription – 66Gy

	Structure		Cost Function	ls On	Status	Reference Dose (Gy)	Multicriterial	Isoconstraint	Isoeffect	Relative Impact
×	PTV Prostatalo	+	Poisson Statistics Cell Kill Model	M	OFF			68.500	0.000	
			Quadratic Overdose Penalty	M	OFF	69.000		2.000	0.000	
	Rektum	-	Maximum Dose Constraint	M	OFF			64.000	0.000	
			Parallel Complication Model	M	OFF	30.000	1	30.5	0.0	
	Blase	-	Maximum Dose Constraint	M	OFF			64.000	0.000	
			Parallel Complication Model	M	OFF	30.000	V	17.3	0.0	
	Body	+	Quadratic Overdose Penalty	M	OFF	30.000		1.000	0.000	
	-	-								
		<u>-</u>	ОК	1	Cancel	Apply	Í	Print	1	

7 beams IMRT, 10 MV 3 mm grid/3% variance

> NB: Contrast for Bladder – use structure control

I.Fotina AK IMRT Würzburg 2009

3 PTVs (anorectal+lymph nodes); OARs – bladder, colon Additional requirements – dose to femoral heads + no high dose between PTVs

Sensi	itivity						
Stru	icture	Cost Function Type	Isoeffect Label	PTV huil	Sensitivities PTV indire	PTV ing li	
PTV	tu-i	PTV tu-il: Quadratic Overdose Penalty	: RMS EXCESS Dose (Gy)	0.690	0.276	0.266	
PTV	ing re	PTV ing re: Quadratic Overdose Penalty	: RMS EXCESS Dose (Gy)Rai:	sing this constr	aint by 1 Gy ch	anges the isoef	fect to PTV ing li by 0.266 (Gy
PTV	ing li	PTV ing II: Quadratic Overdose Penalty	: RMS EXCESS Dose (Gy)	0.100	0.119	0.805	
Darn	n	Darm: Serial Complication Model	: Eq Uni Dose (NT) (Gy)	0.000	0.000	0.000	
Blase	e	Blase: Serial Complication Model	: Eq Uni Dose (NT) (Gy)	0.100	0.100	0.100	
Huel	ftkopf li	Hueftkopf li: Parallel Complication Model	: Mean damage ORGAN (%)	0.000	0.000	0.000	
Huel	ftkopf li	Hueftkopf li: Maximum Dose Constraint	Maximum Dose (Gy)	0.000	0.000	0.100	
Huel	ftkopf re	Hueftkopf re: Parallel Complication Model	: Mean damage ORGAN (%)	0.000	0.000	0.000	
Huel	ftkopf re	Hueftkopf re: Maximum Dose Constraint	Maximum Dose (Gy)	0.000	0.000	0.000	
Body	7	Body: Quadratic Overdose Penalty	: RMS EXCESS Dose (Gy)	0.000	0.000	0.000	
Body	1	Body: Maximum Dose Constraint	Maximum Dose (Gy)	0.255	0.528	0.475	

89 segments/854 MU

Work in progress:

 VMAT activities – currently ERGO++
 2 Linacs with VMAT-option: Elekta Synergy and Synergy S+
 Integration of VMAT in Monaco
 Beta-version scheduled for spring
 AIM – clinical implementation summer/autumn 2009

I.Fotina AK IMRT Würzburg 2009