VERIFY – eine Methode zur Verifikation der Dosisberechnung

DANA-FARBER/BRIGHAM AND WOMEN'S

🔁 CANCER CENTER 🔄

Entwicklung und Implementierung eines unabhängigen Dosisberechnungsalgorithmus inkl. versch. MLC Effekte

Dr. Friedlieb Lorenz Adrian Nalichowski, M.Sc. Florin Rosca, Ph.D. Prof. Dr. Frederik Wenz Piotr Zygmanski, Ph.D.

Ziele bei der Entwicklung und Eigenschaften des Algorithmus

- Konsistent mit Standard-Basisdaten (Golden Beam Data) des Varian 6Ex Beschleunigers
- Berechnung durch Dosisverhältnisse
- Phantom Streuung: 3 Gauß-Funktionen
- Statische und dynamische IMRT
- Einbeziehung aller relevanten MLC Effekte

Dosisberechnung: Standardansatz für ein offenes Feld

 Folgende Gleichung wird verwendet, um die Dosis f
ür ein beliebiges MLC Feld im homogenen Wasserphantom zu berechnen

$$O_{x,y}^{d,SSD} \quad c,s = OAR_{x,y}^{d} \quad c,s$$

$$\cdot \frac{SAD^{2}}{x^{2} + y^{2} + SSD + d^{-2}}$$

$$\cdot TPR^{d} \quad s' \cdot S_{c} \quad c \quad S_{p} \quad s'$$

$$\cdot MU \cdot OF_{10 \times 10, d_{ref}}$$

Modellierung des OAR: Ansatz

$$F_{x,y}^{d} \quad x_{R}, x_{L}, y_{T}, y_{B} = \frac{\sum_{j=1}^{3} \frac{A_{j}^{d} \quad s}{4} \left[\operatorname{erf}\left(\frac{x_{L}^{'} - x_{L}}{\sigma_{j}^{d} \quad s}\right) - \operatorname{erf}\left(\frac{x_{R}^{'} - x_{L}}{\sigma_{j}^{d} \quad s}\right) \right] \cdot \left[\operatorname{erf}\left(\frac{y_{T}^{'} - y_{L}}{\sigma_{j}^{d} \quad s}\right) - \operatorname{erf}\left(\frac{y_{B}^{'} - y_{L}}{\sigma_{j}^{d} \quad s}\right) \right]$$

- Jedes quadratische (oder rechteckige) Feld wird mit einer Summe aus drei Erf-Funktionen modelliert
- Die Amplituden und sigmas sind tiefen- und feldgrößenabhängig (lineare Funktionen)

Auswirkungen des Ausgleichsfilters auf das OAR

 Radial-Faktoren sind relative Dosisverteilungen in radialer Richtung

$$RF_{x,y}^{d} = \frac{D_{x,y}^{d,SSD} c,s}{D_{0,0}^{d,SSD} c,s}$$

• Die Radial-Faktoren (=Hörner) im OAR werden separat modelliert

$$OAR_{x,y}^{d,ideal} c, s = \frac{1}{RF_{x,y}^{d}} \cdot \frac{D_{x,y}^{d,SSD}}{D_{0,0}^{d,SSD}} c, s = \frac{OAR_{x,y}^{d} c, s}{RF_{x,y}^{d}}$$

RF Modellierung

$$RF_{x,y}^{d} = 1 + a_{d} \cdot \sqrt{x^{2} + y^{2}} + b_{d} \cdot x^{2} + y^{2}$$
$$a \ d = r_{0} + r_{1} \cdot d + r_{2} \cdot d^{2}$$

Der Fit für RF wird gleichzeitig mit dem Fit für OAR durchgeführt

OAR Modellierung: Ergebnisse

Profile für alle Feldgrößen und zwei Tiefen (1.6cm and 30cm)

TPR Modellierung

Linac Kalibrierfaktor

• Der Kalibrierfaktor OF ist definiert als

$$OF_{10x10,d_{ref}} = D_{0,0}^{5cm,95cm}$$
 10cm,10cm $= \frac{92.42cGy}{100MU}$

• Jeder Beitrag zur Dosisberechnung ist nun bestimmt:

$$D_{x,y}^{d,SSD} c,s = OAR_{x,y}^{d} c,s \cdot \frac{SAD^{2}}{x^{2} + y^{2} + SSD + d^{2}} \cdot TPR^{d} s'$$
$$\cdot S_{c} c \cdot S_{p} s' \cdot MU \cdot OF_{10 \times 10, d_{ref}}$$

OAR: Summation

- Jedes statische MLC Feld wird in einzelne Rechtecke zerlegt, die mit Erf-Funktionen modelliert werden
- Die Dosis wird f
 ür jedes Rechteck berechnet, und die Summe
 über alle Rechtecke ergibt die Dosis f
 ür das komplette Feld

dMLC Summation

$$S_{p} \cdot TPR \cdot OAR \rightarrow \begin{pmatrix} S_{p} & s'_{max} & \cdot TPR & d, s'_{max} & \sum_{k=1}^{Nsubfields} \Delta mu_{k} \cdot OAR_{open}^{k} & d, x, y \\ T & d, x, y & \cdot \sum_{k=1}^{Nsubfields} S_{p} & cArea' \cdot TPR & d, cArea' \cdot \Delta mu_{k} \cdot OAR_{closed}^{k} & d, x, y \end{pmatrix}$$

- Für jedes Segment existiert ein Beitrag von offenem und geschlossenen MLC
- s_{max} ist die maximale Gesamtfeldgröße

X

+ \

sagittal

axial

5.67	
3.39	
0.35	
-4.22	
-6.5	

5.67
3.39
0.35
-4.22
-6.5

dMLC Berechnung vs. MatriXX Messung

dMLC Berechnung für ein Patientenfeld

Berücksichtigung verschiedener MLC-Effekte

Modell der MLC Transmission

- Die Transmission am Zentralstrahl wird als Funktion der Feldgröße und der Tiefe charakterisiert; alle anderen Effekte gehen dabei als Korrekturfaktoren ein
- Die abgerundeten Leaf-Enden werden in Form eines dosimetrischen Spaltes ∆G berücksichtigt, der die Leaf-Positionen um einen bestimmten Betrag modifiziert
- Variationen in der Materialdichte werden in dem Modell durch die Verwendung eines dynamischen geschlossenen MLC berücksichtigt

$$T \quad x, y, d, c = \frac{D_{cMLC} \quad x, y, d, c}{D_{OB} \quad x, y, d, c} =$$
$$= T_{direct} \quad d \quad \cdot TF_{scatter} \quad d, s_c \quad \cdot TF_{interleaf} \quad y, d \quad \cdot TF_{divergence} \quad r, d$$

$$\phi = \frac{G + \Delta G}{\Delta x}$$

MLC Streuung and ∆G

$$\frac{R-\phi}{1-\phi} = \frac{D_{cMLC} \quad x, y, d, c}{D_{OB} \quad x, y, d, c}$$

 T(d), MLC Streuung und ∆G (=0.14mm) werden durch OB, cMLC und der Messung eines sich bewegenden Spalts (dMLCgap) für verschiedene Feldgrößen und Tiefen bestimmt

MLC Streuung and Strahlaufhärtung

- Die MLC Streuung hängt von der Feldgröße und Tiefe ab, da sich das Energiespektrum ändert
- Die erforderlichen Parameter werden von OB und cMLC Messungen f
 ür verschiedene Feldgr
 ößen extrahiert

Interleaf Transmission: statisch vs. dynamisch

$$TF_{interleaf} \quad y, d = \left(\sum_{i} w_{i} \cdot G_{i} - \left\langle \sum_{i} w_{i} \cdot G_{i} \right\rangle \right) + 1$$

Tongue & Groove Effekt

Aufgrund von Geometrieüberlegungen und spektralen Änderungen

nehmen wir an:

$$F_{divergence}$$
 $r, d = T_{CAX}^{\sqrt{l+a d}}$

 $\cdot r^2 / SAD^2$

Die Berechnung unter Verwendung einer konstanten MLC Transmission verwendet $T_0=1.4\%$, (1.2%) welches in Bestrahlungsplanungssystemen ein üblicher Wert ist

Der Vergleich zwischen den Berechnungen mit und ohne T&G Effekt zeigt die Stellen, wo der T&G auftritt

Einfluss der MLC Effekte auf die abgestrahlte Dosis eines IMRT Plans

(9 Einstrahlrichtungen, d=15cm, Vergleich mit $T_0=1.4\%$)

- MLC Streuung und spektrale Änderungen
 - Differenz für die integrierte Dosis aller Felder: +12.3%
 - Zwischen 0.9% und 2.5% f
 ür jedes Einzelfeld relativ zur Maximaldosis in diesem Feld
 - 4.9% Überdosierung für das Gesamtfeld relativ zum Dosismaximum
 - Lokale Diskrepanzen von mehr als 103% in allen Einzelfeldern
- T&G Effekt
 - zwischen -5.7% und -13.8% relativ zum Dosismaximum in den Einzelfeldern
 - bis zu -8.9% durchschnittliche Unterdosierung im Hochdosisbereich des Gesamtfelds
- Auswirkung Strahldivergenz im Gesamtfeld
 - durchschnittlich ca. 2% Unterdosierung
 - lokal bis zu 10% Unterdosierung (radial gemittelt)

(x,y)=(0,0): low dose

measured dose [cGy]

(x,y)=(0,10): high dose

Gesamt- plan	TPS - Kammer	VERIFY- Kammer
(x,y)= (0,0)	-12.6%	+0.29%
(x,y)= (0,10)	-0.77 %	-0.82%

Zusammenfassung

- VERIFY wurde als zuverlässiger, unabhängiger Dosisberechnungsalgorithmus in die klinische Routine implementiert
- Ein tiefenabhängiges, analytisches Modell für
 - die mittlere MLC Transmission
 - die MLC-Streuung
 - Strahlaufhärtung
 - Strahldivergenz,
 - Interleaf-Transmission,
 - Abgerundete Leaf Enden und
 - T&G Effekt

wurde entwickelt und eine Abschätzung der klinischen Relevanz dieser Effekte durchgeführt

• Eine präzise Modellierung der MLC Transmission ist Voraussetzung für eine zuverlässige Dosisberechnung

Vielen Dank für ihre Aufmerksamkeit!