Universitätsklinikum Würzburg

Klinikum der Bayerischen Julius-Maximilians Universität

IMRT und Patientenbewegung

Anne Richter

Klinik und Poliklinik für Strahlentherapie

Direktor: Prof. Dr. M. Flentje

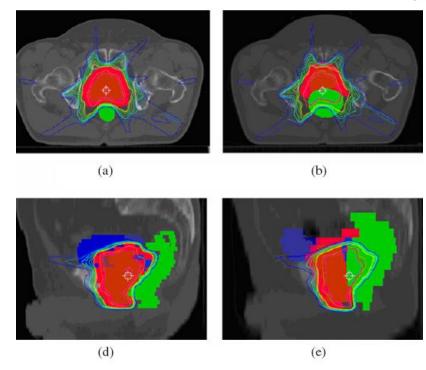
AK IMRT Neuruppin 27. – 28.03.2008

Einleitung

- Einleitung
- Literatur
 - Untersuchungen
 zum Einfluss der Patientenbewegung bei IMRT
 - Strategien
 zur Berücksichtigung der Patientenbewegung
- Zusammenfassung

Überblick Literatur

Seco et al	IMRT Lunge	4D CT, Monte Carlo	
Wertz et al	IMRT Prostata	wiederholte	
Han et al	IMRT Cervix	CT-Bildgebung	
Zhang et al	IMRT, IMPT Prostata		
Kuo et al	IMRT Leber	Fluenzänderung	
Suzuki et al	IMRT HNO	Film, EPID	
Seco et al	Segment-MU	model-basiert	
Maleike et al	IMRT Prostata	model-basiert	

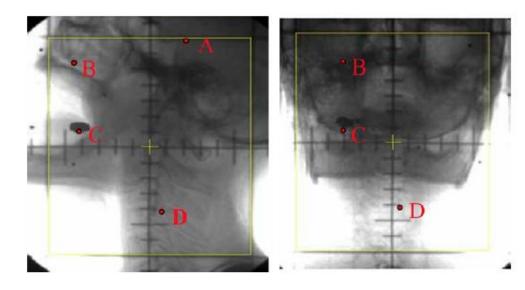

Wertz et al, Han et al, Zhang et al

- Interfraktionelle Bewegung von Prostata und Cervix-Ca Patienten
- wiederholte CT Studien
- Prostata

$$\Delta x = 7.6 \pm 4.2 \text{ mm}$$

$$\Delta x_{Max} = 14.6 \text{ mm}$$

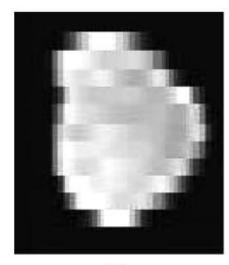
 Rektumfüllung beeinflusst Prostataposition


Wertz et al PMB2007

- $\Delta V(Rektum, Dünndarm, Blase) = 82, 180, 288cm^3$
- Blasenfüllung kontrollieren, angepasste Margins verwenden Bildgestützte Positionskorrektur

Suzuki et al

- 22 HNO Patienten
- Untersuchung
 - Setup-Fehler
 - Organbewegung
- Ergebnisse
 - Setup-Fehler SD 0.7-1.3 mm
 - Intrafraktionelle Fehler SD 0.2-0.8mm
- Margins berechnet nach Stroom1999 und McKenzie2002
 - PTV margin 2.0-3.6mm → 5mm
 - PRV margin 1.6-2.4mm → 3mm

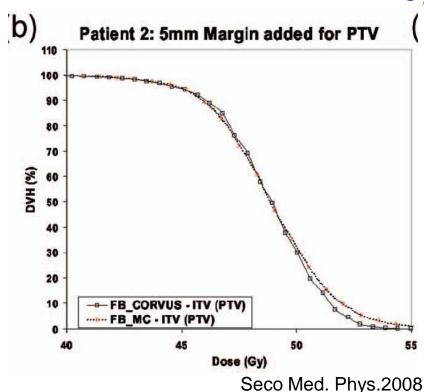

Suzuki et al Green Journal 2006

Kuo et al

- 8 Leber-Ca Patienten, IMRT
- Untersuchung
 - Einfluss der Bewegung auf Fluenzänderung
 - Erfassung der Diaphragma Bewegung

- Ergebnisse
 - Fluenzveränderung ~ max. Bew.-Amplitude
 - Fluenzveränderung ~ Fluenzgradient

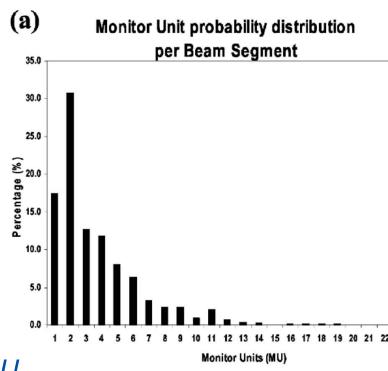
(a)



(d) Kuo PMB 2007

Seco et al

- 3 Patienten mit Bronchial-Ca
- 3D und 4DCT Studien
- Dosisberechnung
 - Pencil Beam
 - 4D Monte Carlo Algorithmen
- Ergebnisse



- Pencil Beam ungenau im Gewebe mit Dichteunterschieden
- Große Dosisunterschiede (3-5%) zwischen 3DCT vs 4DCT
 → besser 4DCT als Planungsgrundlage

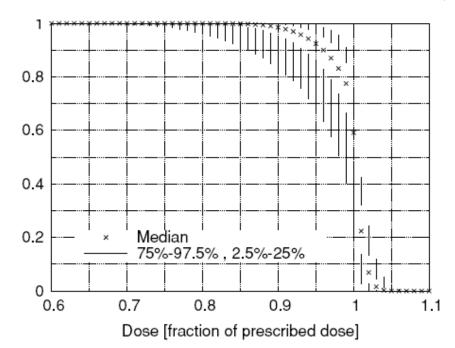
Seco et al

- Dosisvariation mit Segment-MU
- Organbewegung modelliert
 - sin, sin4, sin6
- Histogramm Segment-MUs
- Ergebnisse
 - Segmente mit weniger als 10-15MU
 - → Dosisabweichung von 15-35%

Seco Med. Phys.2007

Segmente mit wenig MUs für bewegliche Zielvolumina vermeiden

Überblick Literatur - Strategien


Maleike et al	considering uncertainties for IMRT optimization
Mayo et al	Hybrid IMRT technique

Strategie

Maleike et al Planbewertung

- Stochastische Beschreibung der Dosisverteilung
- DVH als Box Plot
- 3 Fehlertypen
 - Bewegungsamplitude
 - Systemat. + zufällige Fehler

Maleike et al PMB 2006

Voxel bewegt sich in Dosiswolke und akkumuliert Dosis

Adaptive IMRT-Planung

Information zur Variation der Anatomie → modifizierte Zielfunktion

Strategie

Mayo et al

- Hybrid Technik
- Bronchial und Oesophagus-Ca Patienten
- Vergleich Hybrid, IMRT und 3D Technik

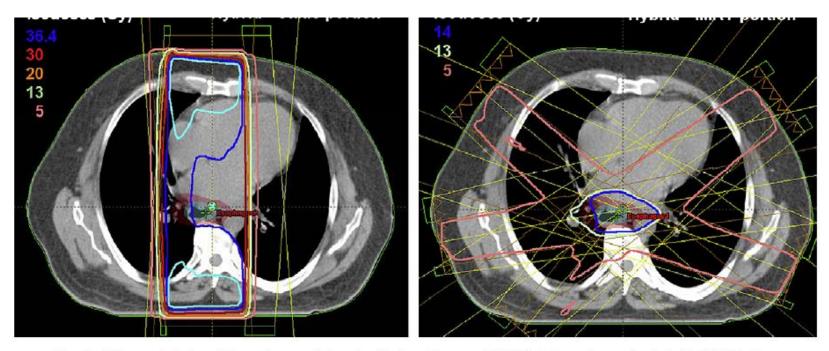


Fig. 1. The static (a) and intensity-modulated radiation therapy (IMRT) (b) portions of a hybrid IMRT plan.

Mayo in Press IJROBP

Fazit

- Einfluss von Blasen- und Rektumfüllung
 - → Angepasste Sicherheitssäume
- Bewegliche Zielvolumina (Thorax)
 - → Segmente mit wenig MUs vermeiden
 - → Hybridtechnik
 - → 4D CT als Planungsgrundlage
- Dosisberechnungsalgorithmus
 - → Monte Carlo
- Bildgestützte Verifikation der Patientenposition

Universitätsklinikum Würzburg Klinikum der Bayerischen Julius-Maximilians Universität

Universitätsklinikum Würzburg Klinikum der Bayerischen Julius-Maximilians Universität

Suzuki

Thealt of Setup ellots for one patient	•	Sp-INTER	mean of setup errors for one patient
--	---	----------	--------------------------------------

•
$$\Sigma_{\text{INTER}}$$
 SD of Sp INTER for all patients

•
$$\sigma p_{INTER}$$
 SD of setup errors for one patient from fraction to fraction

•
$$\sigma_{INTER}$$
 RMS of σ_{INTER} for all patient

•
$$\mu_{intra}$$
 mean of Sp intra for all patients

•
$$\sum_{intra}$$
 SD of Sp intra for all patients

•
$$\sigma p_{Intra}$$
 SD of organ motion for one patient from interval to interval

•
$$\sigma_{Intra}$$
 RMS of σ p $_{Intra}$ for all patient

•
$$\sum_{\text{total}} = \sqrt{\sum_{\text{INTER}}^2 + \sum_{\text{intra}}^2}$$

•
$$\sigma_{\text{total}} = \sqrt{\sigma_{\text{INTER}}^2 + \sigma_{\text{intra}}^2}$$

• PTVmargin =
$$2 \sum_{total} + 0.7 \sigma_{total}$$

• PRV =
$$1.3 \Sigma + 0.5\sigma$$

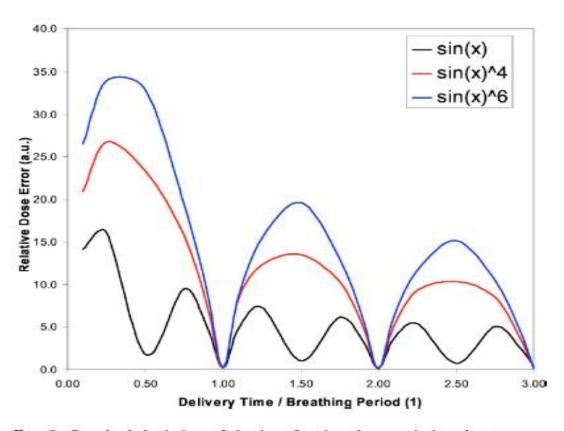


Fig. 8. Standard deviation of the intrafraction dose variation due to organ motion presented for the $\sin(x)$, $\sin^4(x)$, and $\sin^6(x)$ motion, where X axis represent the ratio of delivery time to breathing period (DB). As an example, for breathing period of 4 s and dose rate of 500 MU/min, a DB value of 1 or 0.5 corresponds approximately to 33 or 17 MU intensity per beam segment.

Mayo in Press

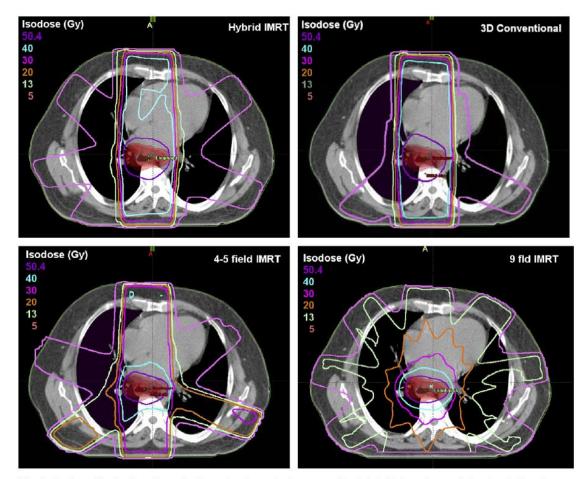


Fig. 2. Isodose distributions from the four planning techniques examined: hybrid intensity-modulated radiation therapy (a), three-dimensional (3D) conformal (b), IMRT with four or five fields (c), and IMRT with nine-fields (d). The hybrid IMRT plan is the sum of the static and IMRT plans illustrated in Fig. 1.