Belastung von Normalgeweben außerhalb des Zielvolumens in Abhängigkeit von IMRT-Technik und Photonenergie

Motivation

Hall E.J., Phil D. International Journal of Radiation Oncology Biology and Physics 2006 May page 1-7:

"... the downside to IMRT is the potential to increase the number of radiation-induced second cancers. The reasons for this potential are more monitor units and, therefore, a larger total-body dose because of leakage radiation and, because IMRT involves more fields, a bigger volume of normal tissue is exposed to lower radiation doses..... "

→ "Periphere Dosis" nach van der Giessen (International Journal of Radiation Oncology Biology and Physics 1996 May page 1059-1068)

Motivation

Überlegung 1

Welche Faktoren wirken auf die Belastung von Normalgeweben außerhalb der unmittelbaren Bestrahlungsregion?

→Energie

- → Bestrahlungstechnik
- →Feldgröße
- →Aufbau des Kollimiersystems
- →Flatteningfilter

Periphere Dosis außerhalb der Bestrahlungsregion 1

Verschiedene IMRT-Technologien bei 6 – 25 MV

- → Kompensator hoher Dichte MCP96 (Pb)
- → Kompensator mittlerer Dichte Zn+Wachs (Zn)
- ➔ MLC step&shoot

Zum Vergleich

→ open field (als Beispiel f. konformierende Bestrahlung)

Methode

- → alle Primärfelder 20 x 22
- → Messung peripherer Tiefendosen 18 cm off beam
- → Messung mit Ionisationskammer 0,3 cm³ in Plexiglas
- → normiert auf 10Gy mittlere Dosis

Experimenteller Aufbau Serie 1

"Künstliche" IMRT-Fluenzverteilung

Dosisverteilung im Phantom

- Zunahme der <u>p</u>eripheren <u>D</u>osis (PD) ab 20mm Tiefe bei kleineren Enenergien

- generell deutlich höhere PD-Werte nahe der Oberfläche bei höheren Energien

Mevatron Primus offenes Feld, 6MV, 15MV

Mevatron Primus, 6MV, versch. Technologien

Mevatron Primus, 15MV, versch. Technologien

Vergleich zum offenen Feld

- 1. MLC-IMRT : PD-Anstieg mit Faktor zwischen 1.2 und 1.8 abhängig von der Photonenenergie und der Tiefe
- 2. MCP-Kompensator-IMRT: Anstieg des Faktors auf 2.0 bis 2.2
- 3. Zn-Kompensator-IMRT: Faktor verändert sich auf 2.2 und 2.4
 - → Erhöhung der PD bei Verwendung von Kompensatoren bei IMRT ist vergleichbar groß wie PD beim Einsatz von Stahlkeilen [2] bei älterer Bestrahlungstechnik mit weniger Feldern

Precise, 6MV, versch. Technologien - ebenfalls Anstieg der periph.Dosis durch IMRT

Precise, 10MV, versch. Technologien - bei 10MV ist Erhöhung durch IMRT geringer als bei 6MV

Precise, 25MV, versch. Technologien

- bei 25MV ist rel. Erhöhung durch MLC-IMRT stärker im Vgl. zum Komp.

Diskussion

Die Werte der PD am Precise sind generell kleiner als am Mevatron.

Dies wird wahrscheinlich durch die "backup jaws" ("Tertíärblenden") der Elekta Maschine verursacht.

Diskussion II

Offenes Feld: mehr PD bei fallender Energie verursacht durch Compton-Streuung im bestrahlten Phantom

sMLM-Technik:

erhöhte PD aufgrund der Durchlassstrahlung am MLC

Kompensatortechnik:

größter Anstieg der PD durch Photonenstreuung in den Kompensatoren selbst

These:

generell erhöhte Dosiswerte an der Oberfläche durch Reflexion von Sekundärelektronenanteilen aus Beschleunigerkopf

Überlegung 2

Wie können mit einfachen Mitteln die Hauptanteile zur peripheren Dosis separiert werden?

- →Dosisanteile aus Beschleunigerkopf
- →Dosisanteile aus bestrahltem Körper selbst

Wie können mit einfachen Mitteln Neutronen- und Photonenanteile separiert werden?

Experimenteller Aufbau Serie 2

- Messungen mit Streukörper

- Messungen ohne Streukörper (X)

Periphere Dosis außerhalb der Bestrahlungsregion 2

Verschiedene IMRT-Technologien bei 6 – 25 MV

- → Kompensator hoher Dichte (MCP96)
- → Kompensator mittlerer Dichte (Zn+Wachs)
- ➔ MLC step&shoot

Zum Vergleich

→ open field (als Beispiel f. konformierende Bestrahlung)

Methode

- → alle Primärfelder 20 x 22
- → Messung peripherer Tiefendosen 18 cm off beam
- → Messung mit TLD 600 und 700 in Plexiglas
- → normiert auf 10Gy mittlere Dosis

TLD

LiF-Detektoren vom Typ TLD-600 und TLD-700 (Fa. Harshaw) zusammengefasst in 2 Chargen TLD-700: 99,99% ⁷Li → photonenempfindlich TLD-600: ~95% ⁶Li → photonen- und neutronenempfindlich

Periphere Dosis außerhalb der Bestrahlungsregion 2

Erfassung der Neutronenanteile durch Messung mit TLD-600 und TLD-700

- Kalibriert mit Co60 im Streustrahlenbereich
- → Bildung der Differenz zwischen Kurvenintegralen TLD-600 und TLD-700
- → Angabe der Neutronendosis in Kobaltäquivalent

Ergebnisse offenes Feld

-Oberflächennah 5/10 mm:

geringer Einfluss, d.h. Dosis kommt primär vom Strahlerkopf -In der Tiefe >20mm:

Dosis aus Kopf ca. 0,2%, durch Streudosis aus Körper Anstieg auf das 2- bzw- 2,5-fache

Ergebnisse MLC

In der Tiefe >20mm: - Dosis aus Kopf ca. 0,4% bei 6MV

- bei 15MV höher, da höhere leakage
- durch Streudosis aus Körper Anstieg auf das ca.2-/-3-fache

Ergebnisse MCP-Kompenstor

In der Tiefe >20mm: - Dosis aus Kopf inkl. Kompensator als Streustrahlenquelle ca. 0,55% bei 15MV, ca. 0,7% bei 6MV;

- durch Streudosis aus Körper Anstieg auf das ca. 1,5-fache

Ergebnisse offenes Feld Neutronen

Neutronenanteile wie erwartet nur bei 15MV
Neutronenanteile kommen primär vom Beschleunigerkopf

Ergebnisse MLC Neutronen

→ Anstieg der durch Neutronen generierten Dosis auf das ca. 4-fache bei Verwendung der MLC Technologie

Ergebnisse Zn-Komp. Neutronen

Anstieg der durch Neutronen generierten Dosis auf das ca. 1,5-fache bei Verwendung der Zinn-Komp.- Technologie

Ergebnisse Pb-Komp. Neutronen

Anstieg der durch Neutronen generierten Dosis auf das ca. 1,5-fache bei Verwendung der MCP-Komp.- Technologie

Zusammenfassung

→ Die Experimente ohne Streuquader zeigen, dass 30 – 50% der
Dosis im Patienten selbst über Sekundärprozesse erzeugt werden, d.h.
50 -70 % kommen aus dem Strahlerkopfbereich

→ Die Strahlenbelastung durch die Neutronen korreliert hauptsächlich mit der Zahl der MUs.

→ Dadurch bei Kompensatortechnik i.A. weniger Neutronenbelastung; keine Unterschiede zwischen Zinn und MCP.

Schlussfolgerung + Ausblick

- Bei Verfügbarkeit beider IMRT-Technologien sollte die Wahl der Photonenenergie auch unter Berücksichtigung der Strahlenbelastung außerhalb des Nutzstrahlenfeldes erfolgen.

 Vergleicht man die Dosisbelastung durch vermehrte Photonenstreuung (aus Strahlerkopf und Körper) im niedrigen MV-Bereich z.B. 6MV mit der durch Neutronen im höheren MV-Bereich ist sowohl für Kompensatortechnik als auch für MLC-Technik 6MV zu bevorzugen.

- Messungen zu 10 MV sind noch nicht abgeschlossen.

 Evtl. liegt genau zwischen 6MV und 15MV ein Optimum (???), d.h. summarisches Minimum der Dosisbelastung durch Photonen und Neutronen.

