

Machine QA - Hard Wedge

3D view

MatriXX vs. Water Phantom Scan

Direct comparison

Profiles comparison

difference

Interpolation to 1mm grid

Plan data

Member of the IBA Group

Position adjustment

Pixel spacing

Figure 3. Comparison of the penumbra for the three collimators when the leaves are positioned at the edge of a centred $10 \times 10 \text{ cm}^2$ field for 6 MV beams. Note that there is no appreciable difference between all three systems though designs are different.

M Saiful Huq, Indra J Das, Todd Steinberg and James M Galvin

A dosimetric comparison of various multileaf collimators

Phys. Med. Biol. 47 (2002) N159-N170

Standard collimators produce a cutoff frequency of ca. 0.14 mm⁻¹

Nyqvist Sampling Theorem

Anti - aliasing

- □ All 2D devices work in the undersampling domain
- This causes aliasing effects, affecting isodose contours
- In order to improve contours, an anti-aliasing filter (low pass) is needed
- Cylindric ion chamber provides this low-pass intrinsically !

SCANDITRONIX WELLHOFER

MatriXX for μ -MLC modulated fields

BrainLab Novalis with 3mm MLC, BrainScan planning system
Measurements in Kumamoto, Japan March 06
12-field IMRT plan
MatriXX intended use: standard MLC
Can it be used also for µ-MLC ?

MatriXX vs. BrainScan

MatriXX vs. BrainScan - 0.5mm res.

Isodoses MatriXX measurement

Gamma

90% - 60% - 30% 3%/3mm

MatriXX vs. BrainScan - 0.5mm res.

X-profile comparison

MatriXX vs. BrainScan - 7.62 mm res.

X-profile comparison

Member of the IBA Group

90% - 60% - 30% 3%/3mm

Member of the IBA Group

Double Fermian Fit

Profile w/ double Fermi fit plus exponential tail

+upper

+ lowe r

+/-0.3 mm

Jaw displacement vs. Read-out

deviation

5

Linear interpolation & 50 % isodose

profile w/ lin interpolation

Jaw displacement vs. Read-out

deviation

Member of the IBA Group

Fermi Fit application

17

Linear interpol vs. Fermian Fit

Min sampling time of 20ms and no dead time between frames allow tracking of LINAC startup

Averaging over ROI improves signal/noise for these short sampling intervals

Linac startup

SCANDITRONIX

Integration of highly modulated field

