

Der Neue Ionisationskammer-Flächendetektor MatriXX

DGMP AK IMRT Würzburg 17/18. März 2005

Dr. Lutz Müller

SCANDITRONIX WELLHOFER

IMRT pre-treatment verification

Field oriented

Plan oriented

Workflow of Film Verification

	CT scan of phantom	Irradiate patient's plan to phantom	E
Calculate dose dis-	Apply patient's plan to phantom		Process film
tribution in Phantom			
re 3	OmniPro - COMPARE ead in EVALUATI D data DATA: isodoses, + -	IMRT AND E calibrate register reconstruct	et 3d

SCANDITRONIX WELLHOFER

Requirements for ,ideal' 2D device

- •Good dosimetric properties
- •High granularity
- •High dose linearity
- •Short sampling intervals
- No deadtime
- Advanced analysis tools

- Air vented lon chambers
- 1020 chambers, 7.62 mm spacing
- TERA recycling integrator

OmniPro ImRT Software

MatriXX Key Features

Pixel Ion chamber technology (air vented)

1020 (MXX) detectors in 24x24 cm matrix

Single detector Φ = 4.5 mm (height 5mm), 0.07 cc

Parallel reading w/o dead time

Real time measurements

Software (OmniPro ImRT, Accept)

Calibration

- Normalization of detector
 - actector
 - responses
- Absolute dose calibration
- Customer recalibration
- □ K_{PT} Correction

Factory calibration to ⁶⁰Co

Global and local calibration factors

Build-in temperature and pressure sensors (or manual correction

Intended use

□ IMRT

 Pre-treatment verification of the 2D dose distribution delivered by IMRT beams

QA of high energy photon and electron beams

- Homogeneity
- Symmetry
- Dynamic and static wedge angle
- Start up behaviour
- Real time measurement
- In-line & cross-line profiles (flatness, symmetry)

40

10

8

14

12 Depth (cm)

MatriXX- Basic dosimetry properties

TMR

1.05

1.00 0.95

0.90

0.85

0.80

0.75

0.70

0

2

FIG. 6. Average reading of the four central pixels of the PXC as a function of the absorbed dose to water determined at d_{max} .

FIG. 8. TMR data obtained with a 12×12 cm² field of a 6 MV x-ray beam, using a Farmer chamber (Δ) and the PXC (\bigcirc).

6

FIG. 10. Comparison of beam profiles measured with an ionization chamber in a water phantom (—) and with the PXC (\bigcirc). The irradiations were performed in a MV x-ray beam at $d_{\rm max}$ and $10 \times 10 \text{ cm}^2$ field size. The results are normalized to the central beam axis.

MatriXX - Energy dependence

TERA Asic scheme

MatriXX- clinical tests

IMRT field
verification

Clinical tests

 S.Anna Hospital (Torino) test with DMLC Varian

Time-varying field: 1.2x1.2 cm² square field going to 12.4x12.4 cm² square field

IMRT Measurements 6MV

Set-up

Prostate field - 16 segments

Direct comparison

Profiles comparison

difference

Interpolation to 1mm grid

Plan data

Position adjustment

Detector response fuction

$$a(r) \propto \frac{1}{1+e^{(r-r_0)/\sigma}}$$

Levels	×
	180.0%
	100.0%
	20.0%

Folding with response function

MatriXX measurement

Plan data folded with Matrixx

Response function

Pixel spacing

Figure 3. Comparison of the penumbra for the three collimators when the leaves are positioned at the edge of a centred $10 \times 10 \text{ cm}^2$ field for 6 MV beams. Note that there is no appreciable difference between all three systems though designs are different.

M Saiful Huq, Indra J Das, Todd Steinberg and James M Galvin

A dosimetric comparison of various multileaf collimators

Phys. Med. Biol. 47 (2002) N159–N170

Linac startup

Key benefits

□ Fast (increased throughput)

□ Accurate

□ Reliable

2D Array - References

Dosimetric characterization of a large area pixel-segmented ionization chamber

414 Med. Phys. 31 (2), February 2004

0094-2405/2004/31(2)/414/7/\$22.00

© 2004 Am. Assoc. Phys. Med. 414

D-IMRT VERIFICATION WITH A 2D PIXEL IONIZATION CHAMBER: DOSIMETRIC AND CLINICAL RESULTS IN HEAD AND NECK CANCER

M.Stasi^g, S. Giordanengo^{a#}, R. Cirio^a, A. Boriano^a, F. Bourhaleb^{a,b}, M. Donettř^{a,c}, E. Garelli^{a,d}, I. Gomola^e, F. Marchetto^a, C. Peroni^a, A. Sardo^{a,f}, G. Scielzo^g

SCANDITRONIX

MatriXX- typical setup

MatriXX - TMR

MatriXX - TMR

MatriXX - dynamic read out

MatriXX features

- Pixel Ion chamber technology (air vented)
- □ 1020 (MXX) detectors in 24x24 cm matrix
- □ Single detector Φ = 4.5 mm (height 5mm), 0.07 cc
- Parallel reading w/o dead time
- **Real time measurements**
- Software (OmniPro ImRT, Accept)

Segments

