

I MRT in der klinischen Anwendung Aktueller Stand und Fragen bzgl. QA und Verifikation

Ulrich Schaller Oncology Care Systems

Siemens Medical Solutions that help S

Four main tabs will be there:

2

- Plan review
- Dosimetry Data Conditioner
- Patient QA
- Machine QA

Patient QA: Independent MU calculation

Beam Number	1001	1002	Machine Name PhinusAkooma
Treatment Machine	PrimesARoomA	PrimusARoomA	Energy (MV) 6.00
Energy(MV)	6.00	6.00	
Collimator Longth(mm)	200.00	200.00	Depth\Off-Axis Dist. 6 1 2 3
Collimater Width(mm)	200.00	200.00	1.5 1.000 1.002 1.007 1.015 Plantino
SSD(mm)	980.00	980.00	2.5 1.000 1.002 1.005 1.014
Depth(mm)	20.00	20.00	5.0 1.000 1.001 1.005 1.012 B 2 30CRT Plan
Off_Axis Distance(mm)	0.00	0.00	10.0 1.000 1.004 1.008 🖃 🖾 Bears
Tray Fractor[TF]	1.00	1.00	15.0 1.000 1.003 1.003 1.007
Wedge Factor(WF)	1.00	1.00	20.0 1 000 0.987 0.991 - 20 Banz
% Blocked	10.00	10.00	
Bolus Factor	0.00	0.09	
Other Factor	1.00	1.00	
Prescribed Isodose Line(RxIDL%)	100.00	100.09	
FieldDese (MV)	25.00	25.00	
SAD[mm]=SSD + Depth	1000.00	1000.00	Analysis Machine
Equivalent Square Col.	20.00	20.00	MC PrimusARoomA
Collimator Output Factor(COF)	1.03	1.03	Encore Office of
Equivalent Square Field	18.97	18.97	Energy (MV) 6
Photon Scatter Factor(PSF)	1.02	1.02	OAR TMR wedg
Tissue Max. Ratio	1.00	1.00	factor
TSF = COF x PSF	1.05	1,05	
INVSQ - [SCD/SAD]*2	1.03	1.03	I UTAY
Off-Axis Factor,0AF	1.00	1.00	factor
Total Dose Per MU[GY/MU]	1,68	1.08	Approve
Planed MU[MU]	40.00	45.00	
Calculated Menitor Unit(MU)	23.16	23,16	Approval Status
Percent Error	42,10	48.54	C'Annova, C Lloanova, C Paiart
Error Below tolerance?	No	No	Teppore Compare France
			Review Date (mm/dd/yy) Review Time (hh:mm:ss) Reviewer Name Remarks I
			OK Cancel Help
InMUCalc Pten	ar Analysis	PointDose A	RefySis and a second second

_

DGMP AK IMRT Wü.20-02-04

Sub Tab: Planar Analysis, full IMRT in a phantom.

- Compares Calculated at the RTP isodoses in a plan for the phantom IMRT plan against delivered doses in the phantom.
- Superimposes the error map on the phantom images
- Generates profiles of errors and also histogram

Siemens Medical Solutions that help

Functional Requirements

Specifications

Accuracy	 penumbra and transmission accurate beam projection conformality clinical resolution and complex shaping fast and accurate modulation 				
Efficiency	 automated shaping economy on resources economy on material costs reduce treatment time increase patient clearance Number of treatment fields Dose escalation (same treatment time) Automation, Integration, Control 				
Universality	•applicable to most clinical sites				
Safety	•Any leaf position shall be verifiable				

leaf travel motion						
leaf edge design						
collimator to skin distance						
leakage through body of leaf						
leakage between adjacent leaves						
leakage between opposed leaf ends						
tracking with backup jaws						
optical vs. radiation coincidence (spec)						
physical resolution						
clinical resolution						
Interdigitation						
leaf positioning speed (spec)						
leaf monitoring method						
leaf positioning accuracy (spec)						
calibration method						
fractional MU control						
Integration between Dose and MLC						
motor control						
Automated Field Sequencing						
clearance spec						
Control System Integration						
Master / Slave relationship						
Maximum field size						

max leaf to least of the man a tile of a solutions USA, Inc.

6

MLC Collimators Important differences between manufacturers

- Double focused (Conic geometry)
- Lower leakage
- Minimized penumbra independent of leave position
- Flat edges (no rounded edges)
- No gap between closed leaves

© 2003 Siemens Medical Solutions USA, Inc.

MLC leakage

Siemens Medical Solutions that help

© 2003 Siemens Medical Solutions USA. Inc.

Calibrating the Siemens Primus MLC

Leaf Position Error As Leaf Moves Across Field

Leaf Motion: Film 1-5, X1 towards X2 Film 6-10, X2 towards X1

Leaf X1.2

Siemens Medical

Courtesy of Dr. Bayouth, Solutions that help **UTMB**

© 2003 Siemens Medical Solutions USA. Inc.

DGMP AK IMRT Wü.20-02-04

Calibrating the Siemens Primus MLC

Reproducibility of Leaf Position, Bank X1

Siemens Medical Solutions that help

UTMB

© 2003 Siemens Medical Solutions USA, Inc.

EPAC Tool

+ 4-point calibration+ Speed calibration

Purchase in combination with MLC training

MLC QA – Physics Workspace, WIP

Planar Analysis, full IMRT in a phantom, Physics Workspace, WIP

Siemens Medical Solutions that help S

© 2003 Siemens Medical Solutions USA, Inc.

DGMP AK IMRT Wü.20-02-04

• OPTIFOCUS MLC

- 82 Leaf-MLC
- 1cm width, isocenter
- Accuracy +/-1mm
- Auto-Initialization and Autocalibration
- Full field, low leakage collimation
- Higher positional accuracy
- Enabler for IMRT

Siemens Medical Solutions that help

IMRT Intensity Map Test

- Visualization of intensity map correlated to the map superimposed on the DRR from planning system
- Checking the beamlets by intensity comparison

Siemens Medical Solutions that help

© 2003 Siemens Medical Solutions USA, Inc.

QA process

		Dynamic Sliding	Cinematic Siemens
Phantom QA Patient plan			
	Segment by Segment	not possible	possible
	Field by Field	possible	possible
	Total plan	possible	possible
Machine QA Dose			
	Linearity low MU	Important	Important (good)
	Dose Rate	Critical	Not relevant
	Symmetry and Flattness	Important	Important (good)
MLC			
	Leaves accuracy	Important	Important
	Leaves speed	Critical	Not relevant
	Leaves acceleration	Critical	Not relevant
	Carriage	Important	Not
	Carriage sag	Important	Not

Siemens Medical Solutions that help

QA for Cinematic IMRT is easier and possible for each step

Siemens Medical Solutions that help

The Continuum of Oncology Care

© 2003 Siemens Medical Solutions USA, Inc.