

WELLHÖFER

Qalitätssicherung an Multileafkollimatoren

Dr. Lutz Müller Würzburg jan 2004

IMRT Verification - present

Workflow of Film Verification

	CT scan of phantom	Irradiate patient's plan to phantom	EE
Calculate dose dis- tribution in Phantom	Apply patient's plan to phantom		Process film
read 3D	OmniPro - COMPARE d in EVALUATI data DATA: isodoses, + -	IMRT AND E calibrat register reconst	lm e ruct 3d

Equipment: Body Phantom

Film application fields:

- 1. Universal body
- Head & Neck
 Stereotactic

Material: water-equivalent RW3 (polystyrene)

Dimensions: U: 36 (W) x 18 (H) x 33 (D) H&N: 18 x 18 x 18 cm

Royal Marsden (UK) Testing

Case: Prostate & Pelvic Nodes in Alderson Phantom

DICOM imported plan

isodose comparison

gamma evaluation

calibrated film

Routine IMRT Verification

- 3D/ 2 ¹/₂D Dosimetry checks the quality of treatment planning process and of the delivery process
- In routine applications, only the delivery needs to be verified
- Check it: measure fluence/sequence offline or online
- Trust it: accurate, frequent QA, specially of MLC, is a MUST

IMRT Verification – 2D

Usage of a-Si EPID (Elekta i-View)

OmniPro-I'mRT connects to ELEKTA's database

recalibrates images (linear response)

Step-and-shoot delivery w/ EPID

EPID vs. Film

groupMember of the IBA

EPID vs. Plan (Helax TMS)

integrated EPID (normalized)

Member of the IBA groupMember of the IBA

calculated plan data

I'mRT –QA Device

I'mRT –QA: Operating Principle

Complex IMRT Field

BIS Measurement

y profile

x profile

Member of the IBA groupMember of the IBA

MLC QA

precise measurement of all leaf positions is needed !

1 cm Gap 0.5mm means 5% error

VELLHOFER Positioning precision of ?-MLC (3D-LINE)

Hysteresis in Leaf Positioning

Hysteresis in Leaf Positioning

MLC QA - Gravity

90° Gantry Orientation vs.270° Gantry Orientation

MLC QA – , Picket Fence'

MLC pairs form a narow slot moving across the field, stopping and reaccelerationg at predefined positions

MLC QA – Leaf Speed Test

Leaf pairs form gaps moving with different speed

Delivery with beam interrupts

MLC QA – , Picket Fence'

alicalization

MLC QA – , Picket Fence'

1.0 mm 0.9 mm 0.8 mm 0.7 mm 0.6 mm 0.5 mm 0.4 mm 0.3 mm 0.2 mm 0.1 mm

[%] Signal

32.0 30.0 28.0

Leaf Position Readout Precision

Leaf Timing Diagram

Member of the IBA groupMember of the IBA 27

S C A N D I T R O N I X

I'mRT - QA Key Features

- Fast and simple set-up: less than 5 minutes.
- Positioning on table or in gantry accessory holder
- Acquisition of individual segments or entire IMRT field
- Minimum acquisition time: 120 msec per 2D image
- Intensity resolution: 12 bit
- Spatial resolution 0.4 x 0.4 mm
- Field size up to 400 x 400 mm
- Acquisition and analysis integrated in OmniPro-IMRT software platform

SCANDITRONIX

WELLHÖFER

Verification of intensity modulated pattern

calculated plan

Individual segments

I'm*RT*-QA

After error analysis & correction

Member of the IBA groupMember of the IBA

Delivery error!

Dynamic Wedge

Verification of IMRT

Quantity	Calculation	Measurement
3-D Dose Distribution	Apply Plan to Phantom. Calculate 3-D Dose Distribution	Put Films in the Phantom. Process, Scan, Calibrate Films. Compose 3-D Dose Distribution
2-D Dose/Fluence	Calculate Fluence Pattern or 2-D Dose Distribution	BIS Integrated Fluence Pattern
Leaf Positions MLC QA	Leaf Positions from TPS	Leaf Positions from single BIS Images
MU/Dose Check	Dose in a reference Point	Ion Chamber in Phantom
Penumbra measurement	Needed for TPS Set-up	Small Ion Chamber or Diode in 3-D-Phantom

IMRT dosimetry applications

- Verification of the planned versus delivered dose
- Verification of the IMRT delivery prior to a treatment
- MLC QA
- Monitor Unit calculation
- Penumbra measurements

Startup behaviour

Dose Comparison Methods

Profiles

Isodoses

Gamma evaluation (3mm/3%)

BIS2G attached to the gantry

The Gantry is turned around 90 degrees.

BIS-System already assembled into the adapter. The accelerator is turned around 180 degrees.

BIS vs. Cadplan

Fluence reconstruction – more complex

Member of the IBA groupMember of the IBA SCANDITRONIX

Fit of penumbra region

$$I(x_{0}, y_{0})? ? I_{0}(x, y)? = \frac{?(x?x_{0})^{2}?(y?y_{0})^{2}}{?}? = \frac{?(x?x_{0})^{2}?(y?y_{0})^{2}}{?}? ? 2 \exp \frac{?(x?x_{0})^{2}?(y?y_{0})^{2}?}{?}?$$

Double-Gaussian Kernel

BIS measured

Cadplan / double gaussian kernel

Gamma Index

Cadplan raw fluence

Double Gaussian Kernel

? x = 3mm, ? D = 3%

MLC QA with BIS^{2G}

BIS^{2G} is an ideal tool for <u>accurate</u> and <u>fast</u> MLC QA:

- High spatial resolution (0.4x0.4mm),
- High acquisition speed (120ms/frame) and
- 3. Gantry mount

MLC QA techniques

leaf positioning accuracy and reproducability acceleration and deceleration of leafs gravity effect leaf transmission (leakage) visualization on-line MLC movement

IMRT dosimetry applications

- Verification of the planned versus delivered dose
- Verification of the IMRT delivery prior to a treatment
- MLC QA
- Monitor Unit calculation
- Penumbra measurements