IMRT in clinical practice at the UMC-Utrecht

3

Clinical use of IMRT

- Improvement of local control without increased incidence of normal tissue complications
 - Dose escalation in the prostate
- Step-and-Shoot delivery with Elekta linacs with MLC
- Inverse planning with PLATO-ITP

Dilemma:

- Increase dose to target And
- Avoid normal tissue And
- Don't reduce margins around target

Outline

- Planning
- Dosimetric verification of treatment plan
- position verification using fiducial gold markers

Planning: partial boosting

- Dose escalation in conventional plan is not possible because of high toxicity for normal tissue
- Reducing margins around the CTV is unsafe because of uncertainties in target position

 Increase the dose to an area inside the target and mimic the old dose distribution outside

Partial boost Treatment of the Prostate

- Dose escalation in GTV up to 76 Gy
- 35 identical fractions, no separate boost
- Mimic conventional dose distribution outside GTV:
 - Rate of toxicity as in conventional treatment
 - Local control at least equal to conventional treatment
- Position verification with fiducial gold markers

Contours for Inverse Planning

Dose prescription

Optimization Parameters (Total dose; values in Gy)								
VOI	On/ off	Overlap Priority	o Organ / Type	Max Dose	Weight	Min Dose	Weight	DVH Points
· • · 9**				·				
ΡΤν		⊲ 5	- 101	69.0	100.0	69.0	100.0	
EBV		⊲ 1	- TOI	76.0	20.0	76.0	30.0	
TV		⊲ 6	- I OI	66.0	100.0	0.0	0.0	
PTVrect		⊲ 2	- 101	68.0	100.0	68.0	50.0	
Organs at risk								
body		< <mark>17</mark>	- T <mark>O</mark> I	45.0	5.0	0.0	0.0	
rectum		a 3	- T <mark>O</mark> I	50.0	3.0	0.0	0.0	
, []								
			ок		Cancel			

Dose Distribution

45.00	68.00	72.00	76.00
50.00	69.00	73.00	
66.00	70.00	74.00	
67.00	71.00	75.00	

Optimized fluence

PA

260

320

Sequencing

Sequencing for the Elekta MLC

Off-axis fields

Transmission through back-up jaw

1

Sequencing for the Elekta MLC

'Flag pole' effect

Transmissions

- X-jaw 0.005
- Y-jaw 0.10
- Leaves 0.03

Sequencing for the Elekta MLC

Deliverable fluence (1 level, 5 segments)

Film (1 level, 5 segments)

UMC-U Sequencer for Elekta in PLATO ITP

- Recursive algorithm
- Collimator and leaf transmissions are considered
- Fixed stratification
- Tongue/groove underdosage is prevented
- Sliding window and close-in modality possible
- Normalization of total deliverable fluence to total required fluence

Quality assurance for IMRT

- Dose check
- Position verification and correction

Dose check

- point dose measurement of isocenter dose
- film measurement of coronal plane

Dose check: ionization chamber in phantom

- Transfer IMRT plan to polystyrene phantom
- Calculate dose
- Measure isocenter dose with IC04 ionization chamber

Ionization chamber measurement in irregular fields

Verification of delivered dose on film

- Transfer IMRT plan to polystyrene phantom
- Calculate dose
- Measure coronal plane dose on film

Calibration ionization chamber and film

- Calibration ionization chamber
 - reference field 10x10 cm, depth 5 cm, SSD
- calibration
 - 20x20 cm wedge fields, depth 5 cm, SSD 100, collimator 90 and 270° 300, 700 and 1500 MU,
 - **fit OD-dose curve to 4th order polynomial**

Calibration Kodak EDR2 film

- % Difference on plateau
- mm difference on gradient
- Generalize to 2D (film) and 3D (dose calculation)

- Statistics:
 - average difference d_{av}
 - standard deviation s_d

- Statistics:
 - average difference d_{av}
 - standard deviation s_d
 - confidence limit
 - $D = |d_{av}| + 1.5 s_d$

open field 10x10

3 beam geometry, open fields

IMRT prostate, AP only

IMRT prostate

Results dose check

- Isocenter dose
 - calculation ionization chamber: -1.6%
- film measurement confidence limits
 - **3.0% or 2.5 mm**

- daily portal imaging of all treatment fields
- detection of position of gold markers
- shrinking action level correction protocol

Implantation of Gold Markers

- Lithotomy Position
- Transrectally Ultrasound Guided
- Iodine Implantation Needle
- Two Markers, One in each lateral Lobe

Feasibility study:

Toxicity

- Mild Transient Hematuria & Rectal Bleeding
- No Extra Pain

Stability of markers inside prostate

- Markers Migration
- Prostate contour changes

Markers Study: materials

- 10 Patients
- 1-3 Gold seeds
- Sequential CT Scans (0, 3, 6) week of treatment
- Daily a-Si Flat Panel Portal Image

Marker study: methods

- Measuring position of markers in repeat CT scans
- Compare similarity between prostate contours in repeat CT scans
- Measuring distance between two markers in Epid image

Repeated CTs

week 0

week 3

week 6

Similarity measures

	V _A N _B	V _{AB} N _A * V _{AB} N _B
CTV	0.98 " 0.04	0.85 " 0.10
Prostate corpus	0.98 " 0.04	0.96 " 0.04

1

Relative distances between markers during treatment

Flat-Panel Imager

Comparison iView camera based and FPI: AP prostate field

camera based

a-Si

Prostate Motion From Day to Day

Variations in position

- Variations in prostate position occur due to
 - internal organ motion
 - set-up variations
- random deviations
- systematic deviations
- First goal: minimize systematic deviations

'Shrinking Action Level' correction protocol

- Correction is applied if the displacement AVERAGED over previous fraction exceeds the 'action level'
- The action level is large at first
- The action level shrinks when more fractions were delivered without position correction
 - * Bel et al. IJROBP 35(2) 321-332

SAL correction for prostate IMRT

- Longitudinal, lateral and vertical directions are considered independently
- Action level per direction
 - Ist fraction: 6.0 mm
 - 2nd fraction: 4.2 mm
 - **3d fraction:** 3.5 mm
 - **4 and higher: 3.0 mm**
- After a correction: go back to action level of 1st fraction

markerTool: field edge detection

markerTool: marker detection

markerTool: marker detection

Correction protocol

MarkerTool							
Afwijking in ligging (cm) Benodigde tafelverplaatsing (cm)							
	Long.	Lat.	Vert.	Long.	Lat.	Vert.	
				2.1	0.7	-0.3	
1	0.4	0.2	-0.0	2.1	0.7	-0.3	
2	-0.8	0.3	0.4	2.1	0.7	-0.3	
3	-0.0	0.1	0.3	2.1	0.7	-0.3	
4	0.1	0.0	0.0	2.1	0.7	-0.3	
5	0.3	-0.3	0.2	2.1	0.7	-0.3	
6	-0.1	-0.1	0.4	2.1	0.7	-0.3	
7	-0.2	0.2	0.5	2.1	0.7	-0.6	
8	0.2	-0.1	-0.2	2.1	0.7	-0.6	
9	-0.1	-0.0	-0.3	2.1	0.7	-0.6	to the first set of the
10	-0.1	0.1	-0.2	2.1	0.7	-0.6	
11	0.3	0.1	-0.7	2.1	0.7	-0.3	
12	-0.4	0.1	0.5	2.1	0.7	-0.3	
13	0.3	0.1	-0.1	2.1	0.7	-0.3	
14	0.2	0.1	0.2	2.1	0.7	-0.3	
15	-0.3	0.1	0.1	2.1	0.7	-0.3	
16	0.1	0.1	-0.1	2.1	0.7	-0.3	
Ok							

Position variation (vertical)

Misalignment target and bones: prostate

fraction 8

fraction 22

Longitudinal (cm)

	averages	maxima	minima
average	0.00	0.08	-0.05
sd	0.33	0.59	0.20
	0.00	0.00	0.00
margin sys	0.10	0.21	0.01
margin rnd	0.23	0.42	0.14
margin tot	0.26	0.42	0.18

Average number of corrections: 2.5 (0 - 8)

Lateral (cm)

	averages	maxima	minima
average	0.01	0.08	-0.08
sd	0.22	0.31	0.13
	0.00	0.00	0.00
margin sys	0.12	0.22	0.02
margin rnd	0.16	0.21	0.09
margin tot	0.20	0.31	0.10

Average number of corrections: 0.9 (0 - 3)

Longitudinal (cm)

	averages	maxima	minima
average	0.01	0.08	-0.11
sd	0.42	0.60	0.30
	0.00	0.00	0.00
margin sys	0.10	0.31	0.01
margin rnd	0.30	0.42	0.21
margin tot	0.33	0.43	0.22

Average number of corrections: 4.7 (1 - 9)

Summary

- Dose escalation to prostate without increase in toxicity
- Quality assurance involves routine measurement of dose in phantom
- Gold fiducial markers are convenient and effective for position verification and correction

Acknowledgments

- Eric Brand
- Eric Colla
- Homan Dehnad
- Pieter Hofman
- Kitty Hoornstra
- Jack de Koning

- Alexis Kotte
- Jan Lagendijk
- Jeroen van Moorselaar
- Aart Nederveen
- Mireille Pot
- Hans Welleweerd

Acknowledgments

- NKB/KWF
- MRC Systems, Heidelberg
- Nucletron, Veenendaal
- Elekta, Crawley