Non-Sphericity Correction und Kovarianzkomponenten

SPM-Kurs 2018

Jan Gläscher

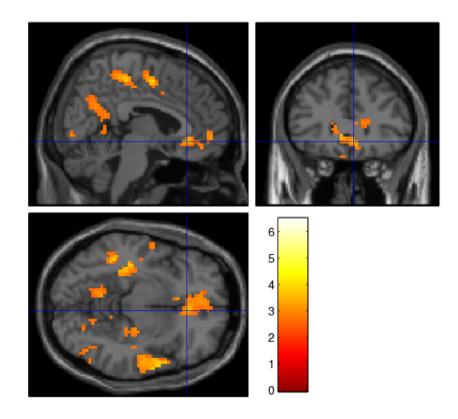
Motivation

mit non-sphericity correction

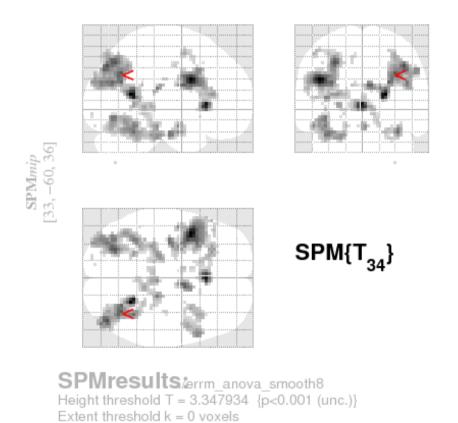
SPMresults.pt_AValue_SValue Height threshold T = 3.579400 {p<0.001 (unc.)} Extent threshold k = 0 voxels

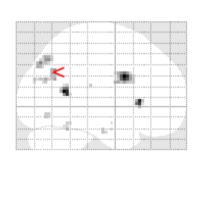
ohne non-sphericity correction

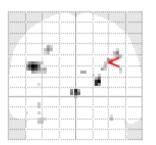
SPMresults*projects/reversal/data/tmp Height threshold T = 2.539483 {p<0.01 (unc.)} Extent threshold k = 0 voxels



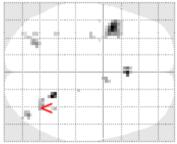
Motivation







SPMmip [33, -63, 36]



 $\mathsf{SPM}\{\mathsf{T}_{34}^{}\}$

SPMresultsAmp1
Height threshold T = 3.347934 {p<0.001 (unc.)} Extent threshold k = 0 voxels

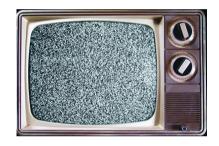
Grundlagen statistischer Tests

Was ist ein statistischer Effekt?

Ein "Muster" in den Daten, das überraschend ist

"The mother of all null hypotheses": Es gibt keine Effekte. Alles ist ein großen Rauschen.

→ Alle Effekte, die sich besonders stark vom "Rauschen" abheben sind signifikant.

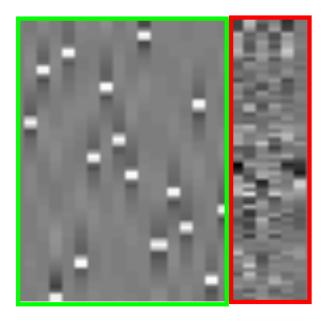


Ziel:

- ⇒ Effekte maximieren
- ⇒ Rauschen minimieren

$$t = \frac{\text{effect}}{\sqrt{\text{var(effect)}}}$$

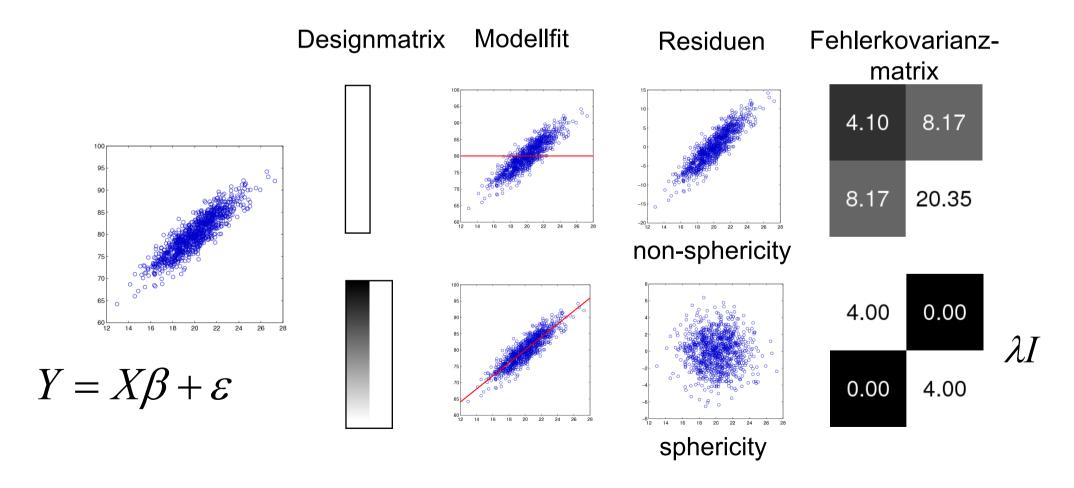
Exp. Bedingungen Bewegungsparam



Voraussetzungen statistischer Tests

Voraussetzungen parametrischer statistischer Tests

- 1.identische Varianzen im Fehlerterm
- 2.unabhängige (=unkorrelierte) Fehler
- identically and independently distributed errors, i.i.d. ⇒ Sphärizität



Wo tritt non-sphericity in fMRI auf?

1. First Level Analysen

- Serielle Autokorrelation der BOLD-Zeitreihe
- aufeinanderfolgende Scans sind nicht voneinander unabhängig

2. Second Level Analysen

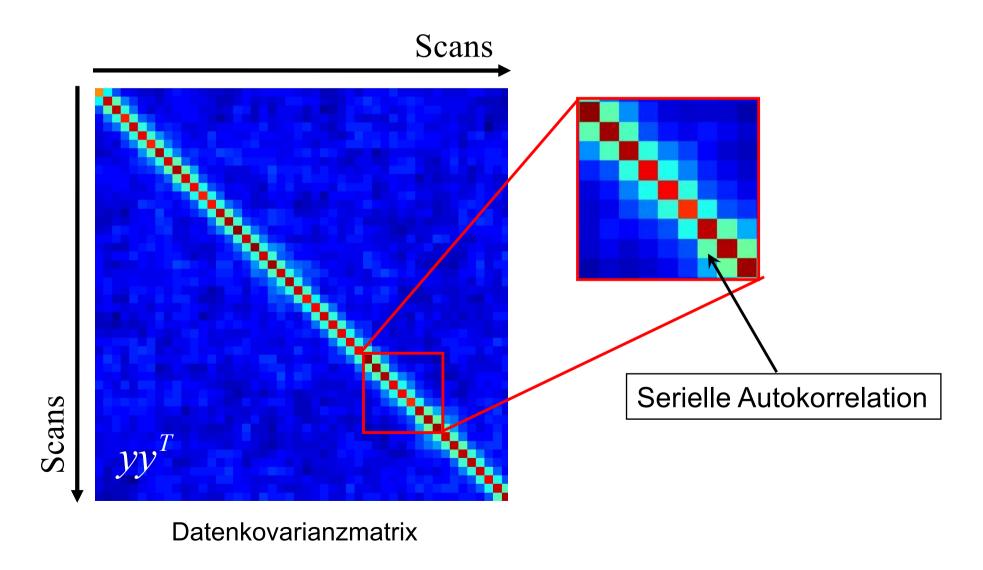
- Repeated measures designs (ANOVA, paired T-Test)
- Mehrere experimentelle Bedingungen in einem Probanden sind miteinander korreliert
- Unterschiedliche Gruppen von Probanden (z.B. Patienten und Kontrollen) haben unterschiedliche Varianzen

Non-sphericity correction in SPM

- Spezifikation eines GLM für die Abhängigkeiten im Fehlerterm
- 2. Schätzen der Parameter für dieses "Fehler-GLM"
- 3. Korrektur des originalen "Daten GLMs" (pre-whitening)
 - → Abhängigkeiten in den Daten werden entfernt und wandern NICHT in den allgemeinen Fehlerterm.
 - → Fehlerterm erfüllt Sphärizitätsbedingung (i.i.d.)
 - → Valide Teststatistik

First level non-sphericity correction

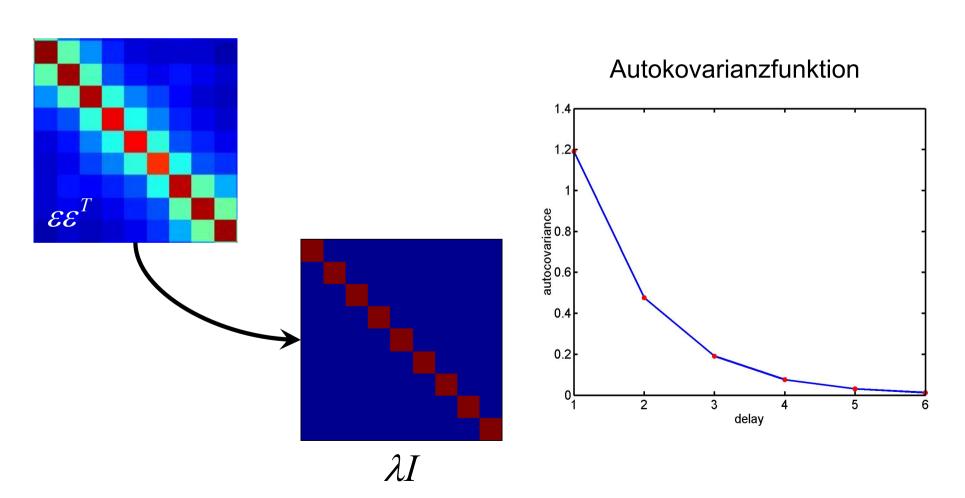
Wie erkennt man non-sphericity?



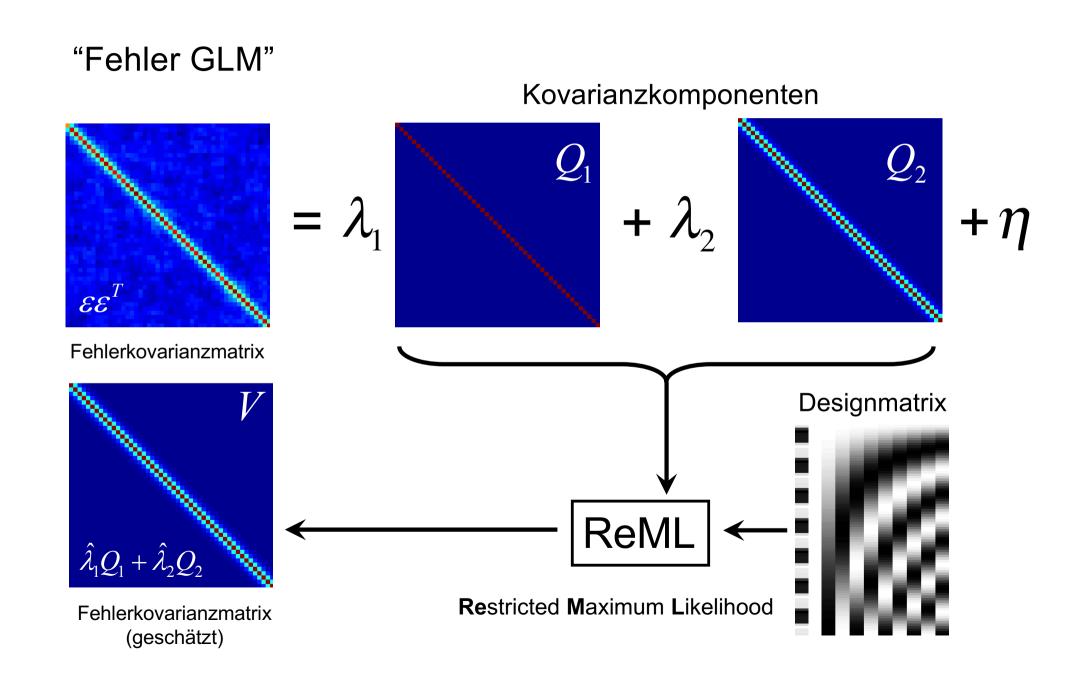
First level non-sphericity correction

Korrektur mittels Autoregressivem Modell 1. Ordnung (AR(1))

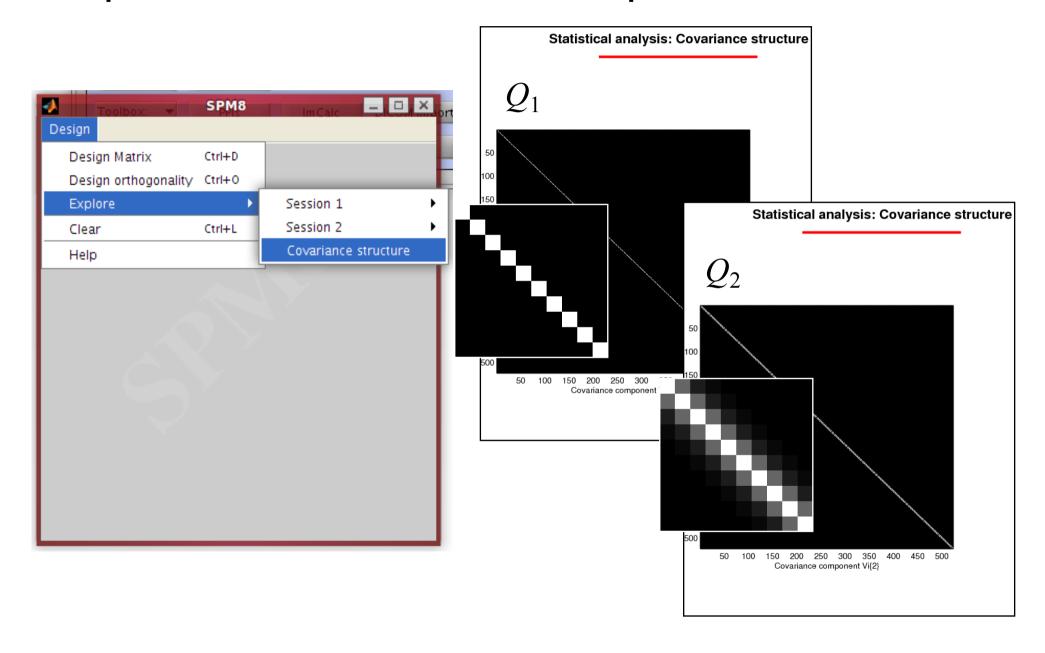
$$\varepsilon_t = a\varepsilon_{t-1} + \eta_t \quad \text{mit} \quad \eta_t \sim N(0, \sigma^2)$$



First level non-sphericity correction



Inspektion der Kovarianzkomponenten



Parameterschätzung in SPM

"Daten GLM"

$$y = X\beta + \varepsilon$$

1. Parameterschätzung mittels OLS

$$\hat{\beta}_{OLS} = X^+ y$$

2. Schätzung der Fehlerkovarianzmatrix

$$V = \text{ReML}(yy^T, X, Q)$$

$$W = V^{-1/2}$$
 (pre)-whitening matrix

3. Parameterschätzung mittels ML

$$\hat{\beta}_{ML} = (WX)^+ Wy$$

- \hat{eta}_{OLS}
- Schnelle Berechnung
- Suboptimal
- Effektive Freiheitsgrade

 $\hat{eta}_{\scriptscriptstyle ML}$

matlab

- hat minimale Varianz
- Sensitivere Tests
- Exakte Freiheitsgrade

Verwendung der geschätzten Kovarianzmatrix

in jedem T/F-contrast

$$t = \frac{\text{effect}}{\sqrt{\text{var}(\text{effect})}}$$

$$= \frac{c^T \hat{\beta}}{\sqrt{\text{var}(c^T \hat{\beta})}}$$

$$= \frac{c^T \hat{\beta}}{\sqrt{\hat{\sigma}^2 c^T (WX)^+ (WX)^{+^T} c}}$$

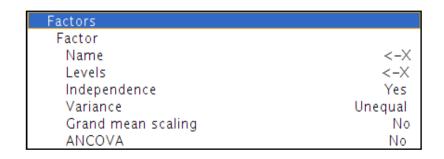
Non-sphericity auf dem 2. Level

Non-sphericity aufgrund von:

- Messwiederholungen (repeated measures)
 Daten eines Probanden auf mehreren Faktorstufen sind korreliert (dependent error)
- 2. Varianzen bei unterschiedlichen Probandengruppen können unterschiedlich sein (non-identical variances)
 - Patienten vs. Kontrollen

WICHTIG:

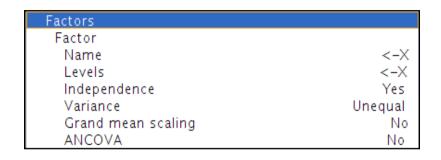
Kovarianzkomponenten werden bei der Designkonfiguration vom Benutzer spezifiziert.

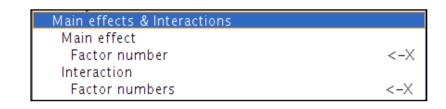


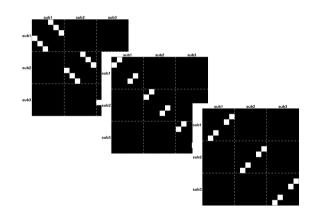
Typische Non-Sphericity Konfigurationen

- Within-Subject Faktor (Messwiederholungsfaktor)
 - Independence: NO
 - Variance: EQUAL
- Between-Subject Faktor ("subject" Faktor)
 - Independence: YES
 - Variance: EQUAL
- Between-Group Faktor (z.B. Patienten vs. Kontrollen)
 - Independence: YES
 - Variance: UNEQUAL

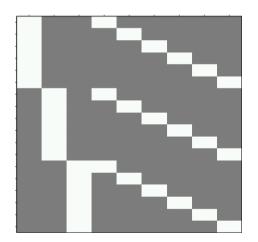
SPM: Factors vs. Main Effect/Interaction







konfiguriert Kovarianzkomponenten



konfiguriert 2nd Level Design Matrix

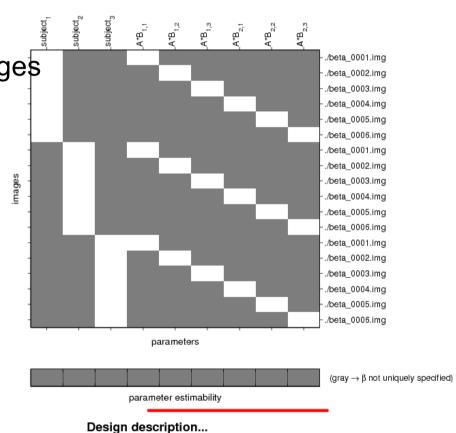
Contrast Tutorial for Multi-Group Designs http://www.glascherlab.org/ressources/conweights.pdf

Beispiel 1 – Designkonfiguration

- 3x2 faktorielles Design (within subject)
 - Faktor A 2 Stufen
 - Faktor B 3 Stufen

3 Probanden mit jeweils 6 con-images

- Main Effect: subject
- Interaction: A x B
- Faktor 1: subject
 - Independence: YES
 - Variance: EQUAL
- Faktor 2: A
 - Independence: NO
 - Variance: EQUAL
- Faktor 3: B
 - Independence: NO
 - Variance: EQUAL

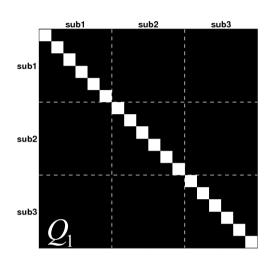


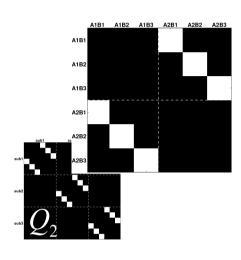
Design: Flexible factorial

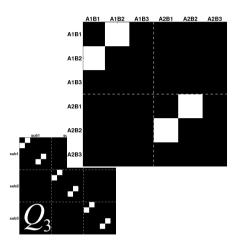
Grand mean scaling: <no grand Mean scaling>

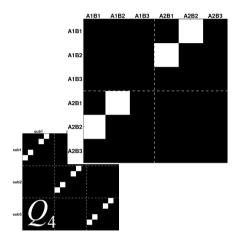
Global calculation : omit

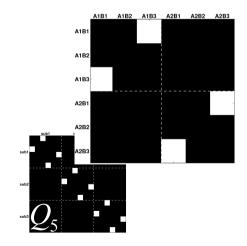
Beispiel 1 – Kovarianzkomponenten

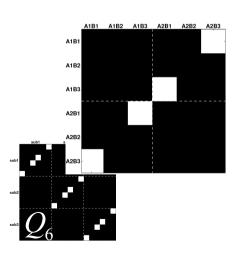


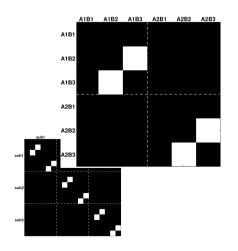


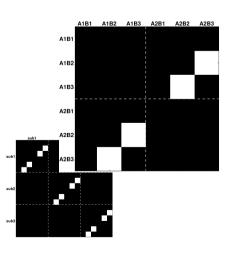






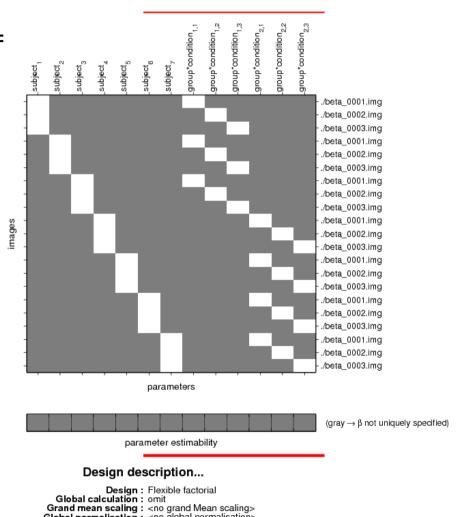




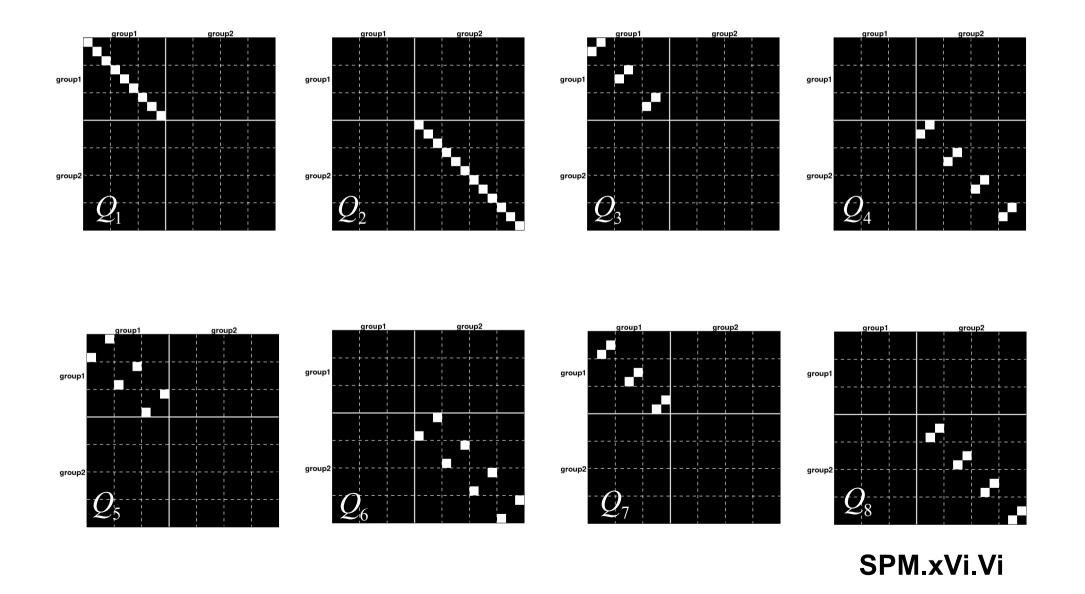


Beispiel 2 – Designkonfiguration

- 2x3 faktorielles Design
 - Faktor Group: 2 levels, n₁=3 und n₂=
 - Faktor Condition: 3 levels
- Faktorenkonfiguration
 - Subject (between-subject Faktor)
 - Independence: YES
 - Variance: EQUAL
 - Group (between-group Faktor)
 - Independence: YES
 - Variance: UNEQUAL
 - Condition (within-subject Faktor)
 - Independence: NO
 - Variance: EQUAL
- Main Effect: subject
- Interaction: group x condition



Beispiel 2 - Kovarianzkomponenten



Schätzung der Kovarianzmatrix

"Daten GLM"

$$y = X\beta + \varepsilon$$

1. Parameterschätzung mittels OLS

$$\hat{\beta}_{OLS} = X^+ y$$

2. Schätzung der Fehlerkovarianzmatrix

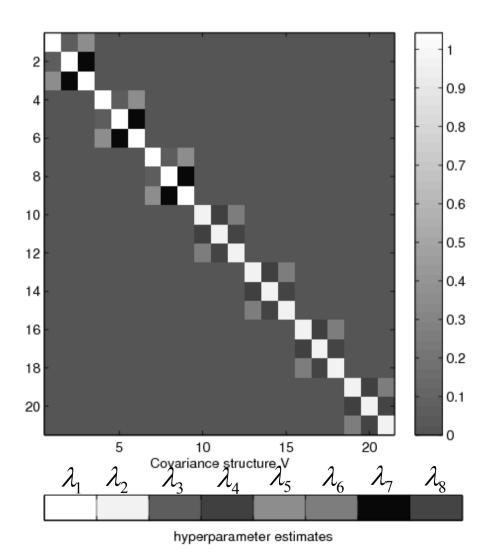
$$\varepsilon = \lambda_1 Q_1 + \lambda_2 Q_2 + \ldots + \lambda_K Q_K + \eta$$

$$\hat{\varepsilon} = V = \text{ReML}(yy^T, X, Q)$$

$$W = V^{-1/2}$$
 (pre)-whitening matrix

3. Parameterschätzung mittels ML

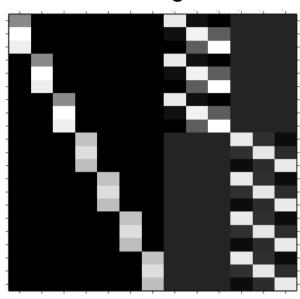
$$\hat{\beta}_{ML} = (WX)^+ Wy$$



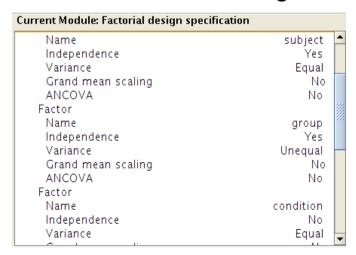
SPM.xVi.V

Wie erkenne ich die non-sphericity correction?

whitened design matrix



review batch editor configuration



jobs struct

```
>> matlabbatch{1}.spm.stats.factorial_design.des.fblock.fac(1)
ans =
        name: 'subject'
        dept: 0
    variance: 0
       amsca: 0
      ancova: 0
>> matlabbatch{1}.spm.stats.factorial_design.des.fblock.fac(2)
        name: 'group'
        dept: 0
    variance: 1
       amsca: 0
      ancova: 0
>> matlabbatch{1}.spm.stats.factorial_design.des.fblock.fac(3)
ans =
        name: 'condition'
        dept: 1
    variance: 0
       amsca: 0
      ancova: 0
```

Independence

YES: dept = 0
 NO: dept = 1

Variance

• EQUAL variance = 0

UNEQUAL variance = 1

Zusammenfassung

- Sphericity als Voraussetzung f
 ür valide Statistik
- Non-sphericity auf dem 1st level
 - Serielle Autokorrelation der BOLD Zeitreihe
- Non-sphericity auf dem 2nd level
 - z.B. durch Messwiederholungen und bei unterschiedlichen Probandengruppen
- Korrektur durch "Fehler GLM"
 - Kovarianzkomponenten sind "Regressoren"
 - Lösung des "Fehler GLMs" resultiert in geschätzter Fehlerkovarianzmatrix
 - wird als pre-whitening Filter W im "Daten GLM" benutzt
 - Präzisere Parameterschätzung
 - Reduktion des Fehlerterms
 - Sensitivere Statistik