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Outline of the ACID course

• 30-60 min intro to ACID toolbox
• hands-on application: 

• Installation, 
• ECMOCO, 
• msPOAS, 
• HySCO,
• Tensor fitting 

• Open discussion



Motivation for ACID toolbox

• One main goal of our group: ”In-vivo histology using MRI”

• Standard DTI is sensitive to microstructure but unspecific

• Advanced diffusion MRI might improve specificity

• Diffusion MRI suffers from various artifacts

• Advanced diffusion MRI requires correcting artifacts

• ACID toolbox provides principled, model-based, and peer-
reviewed correction methods to correct artifacts and thus enable 
advanced diffusion MRI



Outline of this talk

• Diffusion MRI: why, how, and what does it mean?

• Pre-processing steps

- Eddy current and motion correction
- Susceptibility artefacts correction 
- Vibration artefact correction
- Position-orientation adaptive smoothing

• Diffusion models

- Weighted Ordinary Least Squares, Robust Tensor Fitting
- Kurtosis Tensor Imaging
- NODDI-DTI
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Why is diffusion more interesting 
than standard structural imaging?

T1w imageHistology

8



DTI index map

Diffusion MRI reveals 
microstructural information

T1w imageHistology

xy−Plane (Slice 63) [1.250000e+00 1.250000e+00 1.250000e+00 0] (’olsq\_data\_spm0000’)
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Myelin#
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Fiber"structure"of"the"white"ma2er"

Fieremans, ESMRMB, 2015

Main features of fibers in the 
white matter
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Diffusion"signal"in"white"ma2er"

Fieremans, ESMRMB, 2015

Aligned axons in fiber pathways
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Diffusion weighted images
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n DW images

What do we need for 
diffusion MRI?

+ Model

Shell 1 
(b-value e.g 1000 s/mm2)

m reference images

+

Shell 0
(b-value e.g 0 or 100 s/mm2)

b-vectors
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m b=0 images
+

n DW images

Artefact detection / correction.

The general linear model framework 
for diffusion MRI

Shell 1 

Shell 0 



xy−Plane (Slice 63) [1.250000e+00 1.250000e+00 1.250000e+00 0] (’olsq\_data\_spm0000’)

1.00 0.5

CSF: Isotropic 
diffusion

Fractional anisotropy - FA

Diffusion MRI : interpreting fractional 
anisotropy



xy−Plane (Slice 63) [1.250000e+00 1.250000e+00 1.250000e+00 0] (’olsq\_data\_spm0000’)

1.00 0.5

WM: Anisotropic 
diffusion

Fractional anisotropy - FA
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Diffusion MRI : interpreting fractional 
anisotropy
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Diffusion MRI reveals orientation 
information

xy−Plane (Slice 63) [1.250000e+00 1.250000e+00 1.250000e+00 0] (’olsq\_data\_spm0000’)

x

yz



Diffusion MRI reveals orientation 
information

xy−Plane (Slice 63) [1.250000e+00 1.250000e+00 1.250000e+00 0] (’olsq\_data\_spm0000’)

x

yz

https://www.uniklinik-freiburg.de/mr-
en/members/current/reisert/

For tractography in SPM contact Marco Reisert:



Outline

• Diffusion MRI: why, how, and what does it mean?

• Pre-processing steps

- Eddy current and motion correction
- Susceptibility artefacts correction 
- Vibration artefact correction
- Position-orientation adaptive smoothing

• Diffusion models

- Weighted Ordinary Least Squares, Robust Tensor Fitting
- Kurtosis Tensor Imaging
- NODDI-DTI



EC and Motion correction

Stejskal & Tanner, JCP, 1965 Reese et al., MRM, 2003

Mohammadi et al., Frontiers, 2015



Whole-brain eddy current distortions

EC
0B

in-plane shearing through-plane shearingscaling

eddy current 
field 
components

distorted 
image

original 
image

Mohammadi et al., MRM, 2010
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Eddy current and motion 
correction toolbox



Eddy current and motion 
correction toolbox
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Ruthotto et al., Phys Med Biol, 2012; Ruthotto et al., BVM, 2013

EPI “blip-up” EPI “blip-down”Anatomical reference

original
corrected

ACID - HYSCO  
EPI distortion correction
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ACID - HYSCO  
EPI distortion correction
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ACID - HYSCO  
EPI distortion correction
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ACID - HYSCO  
EPI distortion correction
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ACID - HYSCO  
EPI distortion correction
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Vibration artifacts and its 
correction

Correction of Vibration Artifacts in DTI 
Using Phase-Encoding Reversal  
(COVIPER) 

Mohammadi et al., MRM, 2012



Correction of vibration artefacts in DTI using 
phase-encoding reversal (COVIPER)

Mohammadi et al., MRM, 2012

blip-up blip-down arithmetic mean COVIPER

FA

rms(e)



ACID-COVIPER tool
Vibration artefacts



Corrected DTI 
dataset

ACID-COVIPER tool
Vibration artefacts
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What is adaptive denoising?
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What is adaptive denoising?
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Position-orientation adaptive 
smoothing (POAS)

WIAS: Becker et  al., 2013
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Si

b

Multiple shells

Multi-shell position-orientation 
adaptive smoothing (msPOAS)

WIAS – Hamburg: Becker et  al., 2014; Tabelow/Mohammadi et al., 2015
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Si

b

Multiple shells

Multi-shell position-orientation 
adaptive smoothing (msPOAS)

WIAS – Hamburg: Becker et  al., 2014; Tabelow/Mohammadi et al., 2015
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msPOAS in cortex DWI

Becker et al., MIA, 2012, Becker et al., 2014

• Multi-shell dMRI 

• @1.2 x 1.2 x 1.2 mm3

• @ 3T clinical 
scanner



Becker et al., MIA, 2012, Becker et al., 2014

msPOAS in cortex DWI and across brain



Original

msPOAS
44

ACID toolbox – msPOAS
NODDI: Intracellular compartment

Mohammadi et al., Frontiers in Neuroscience, 2015
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Denoising: multi-shell orientation-
position adaptive smoothing (msPOAS) 

Tabelow/Mohammadi et al., Neuroinformatics, 2015
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Denoising: multi-shell orientation-
position adaptive smoothing (msPOAS) 

Tabelow/Mohammadi et al., Neuroinformatics, 2015
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What are the inputs?

Most important
• Diffusoin Data
• b-values
• b-vectors
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What are the outputs?

FA_{M} MD_{M}

Axial_{M} Radial_{M}

{M} = method:
- ols: ordinary least square
- wls: weighted ordinary least square
- robust: robust fitting 
- More details here: 

- Mohammadi et al., MRM, 2012;
- Mohammadi et al., NI, 2013

More advanced:
- Tensor fit error: RES_{M}
- Eigenvalues and Eigenvectors
- Output for Freiburg Fibertools

(Tractography – contact Marco 
Reisert / Volkmar Glauche)

Learn more about the DTI metrics: 
Basser et al. 1996; Diffusion MRI…, Ed: H Johansen-Berg & TEJ Behrens, 200?



Robust tensor fitting for 
spinal cord DTI

Mohammadi et al., MRM, 2012
Mohammadi et al., NI, 2013

Based on Zwiers, 
NI, 2010

€ 

ω =ωDWI ×ω s ×ω v

Outlier
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What is the DKI switch?

Most important
• Diffusoin Data
• b-values (multi-shell)
• b-vectors

DKI switch



Diffusion Kurtosis Tensor Imaging 

Tabesh et al., MRM, 2011

diffusion tensor

kurtosis tensor

The kurtosis tensor is fitted using the constrained least square model suggested 
by Tabesh et al., 2011. For implementation into ACID, see Mohammadi et al., 
Frontiers in Neurosci., 2015
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What are the outputs?

MK_ols

AWF_ols
Learn more about these DKI metrics: 
Fieremans et al., NI, 2011

Maps
- MK – mean kurtosis
- AWF – axonal water fraction

Learn more about MK and AWF: 
- Jensen et al., 2010 (review about 

DKI); 
- Fieremans et al., 2011 (biophysical

model of AWF)
- Jelescu et al., 2015 (comparison to 

NODDI)
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Biophysical model of the diffusion signal

Exploit the distinct morphology of neurites

a slight decrease with age. This decrease was more appar-
ent in comparisons of the younger and the older groups,
where TDL decreased by 8.9% in area 10 and by 10.7% in
area 18 (Fig. 6B). Similarly, MSL decreased from the
younger group to the older group by 12.4% in area 10 and
by 9.4% in area 18 (Fig. 7B). In general, distal segment
lengthwas substantially greater (TDL, 63.1%;MSL, 80.9%)
than proximal segment length. Proximal segment TDL
decreased an average of 8.0% from the younger group to
the older group for both cortical areas, whereas distal TDL
decreased an average of 10.8% (Fig. 6C). Comparable

decreases were observed in proximal (10.1%) and distal
(11.6%) MSL measures (Fig. 7C). Examination of the
dendritic envelope revealed that the middle of the den-
dritic tree (segment orders 3, 4, and 5) most clearly
differentiated age groups and Brodmann areas (Fig. 6D).
The MSL of each segment order increased in a somatofugal
pattern, with consistent age-related decreases in the first
five segment orders (Fig. 7D).

A significant BRODMANN nested within AGE effect
obtained for TDL [F(22,396) ! 2.94, P " 0.0002] but not
MSL. TDL was higher in area 10 than in area 18 for all but

Fig. 3. Photomicrographs of degenerated neurons from F106. A: From area 18. B: From area 10. Note
the virtually complete loss of basilar dendrites. Scale bars ! 50 µm.

Fig. 4. Sample tracings of cells from both cortical areas in the younger group (#50 years). On the
whole, area 10 neurons appear somewhat more complex than area 18 neurons. Moreover, spine
number/density are particularly high in M14 and M23 over F34 and F48. Scale bars ! 100 µm.

DENDRITIC CHANGES IN AREAS 10 AND 18 667

Dendrites in gray matter

100 μm

~0.2 μm
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Zhang, OHBM, 2014

Intra cellular 
diffusion 

Exchange IC/EC 

Extra cellular 
diffusion 

Assumption of impermeable myelin 
sheath! Fieremans, ESMRMB, 2015
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Fig. 4. Sample tracings of cells from both cortical areas in the younger group (#50 years). On the
whole, area 10 neurons appear somewhat more complex than area 18 neurons. Moreover, spine
number/density are particularly high in M14 and M23 over F34 and F48. Scale bars ! 100 µm.
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a slight decrease with age. This decrease was more appar-
ent in comparisons of the younger and the older groups,
where TDL decreased by 8.9% in area 10 and by 10.7% in
area 18 (Fig. 6B). Similarly, MSL decreased from the
younger group to the older group by 12.4% in area 10 and
by 9.4% in area 18 (Fig. 7B). In general, distal segment
lengthwas substantially greater (TDL, 63.1%;MSL, 80.9%)
than proximal segment length. Proximal segment TDL
decreased an average of 8.0% from the younger group to
the older group for both cortical areas, whereas distal TDL
decreased an average of 10.8% (Fig. 6C). Comparable

decreases were observed in proximal (10.1%) and distal
(11.6%) MSL measures (Fig. 7C). Examination of the
dendritic envelope revealed that the middle of the den-
dritic tree (segment orders 3, 4, and 5) most clearly
differentiated age groups and Brodmann areas (Fig. 6D).
The MSL of each segment order increased in a somatofugal
pattern, with consistent age-related decreases in the first
five segment orders (Fig. 7D).

A significant BRODMANN nested within AGE effect
obtained for TDL [F(22,396) ! 2.94, P " 0.0002] but not
MSL. TDL was higher in area 10 than in area 18 for all but
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the virtually complete loss of basilar dendrites. Scale bars ! 50 µm.
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whole, area 10 neurons appear somewhat more complex than area 18 neurons. Moreover, spine
number/density are particularly high in M14 and M23 over F34 and F48. Scale bars ! 100 µm.
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a slight decrease with age. This decrease was more appar-
ent in comparisons of the younger and the older groups,
where TDL decreased by 8.9% in area 10 and by 10.7% in
area 18 (Fig. 6B). Similarly, MSL decreased from the
younger group to the older group by 12.4% in area 10 and
by 9.4% in area 18 (Fig. 7B). In general, distal segment
lengthwas substantially greater (TDL, 63.1%;MSL, 80.9%)
than proximal segment length. Proximal segment TDL
decreased an average of 8.0% from the younger group to
the older group for both cortical areas, whereas distal TDL
decreased an average of 10.8% (Fig. 6C). Comparable

decreases were observed in proximal (10.1%) and distal
(11.6%) MSL measures (Fig. 7C). Examination of the
dendritic envelope revealed that the middle of the den-
dritic tree (segment orders 3, 4, and 5) most clearly
differentiated age groups and Brodmann areas (Fig. 6D).
The MSL of each segment order increased in a somatofugal
pattern, with consistent age-related decreases in the first
five segment orders (Fig. 7D).

A significant BRODMANN nested within AGE effect
obtained for TDL [F(22,396) ! 2.94, P " 0.0002] but not
MSL. TDL was higher in area 10 than in area 18 for all but
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the virtually complete loss of basilar dendrites. Scale bars ! 50 µm.

Fig. 4. Sample tracings of cells from both cortical areas in the younger group (#50 years). On the
whole, area 10 neurons appear somewhat more complex than area 18 neurons. Moreover, spine
number/density are particularly high in M14 and M23 over F34 and F48. Scale bars ! 100 µm.

DENDRITIC CHANGES IN AREAS 10 AND 18 667

Dendrites in gray matter

100 μm

~0.2 μm

5

Exploit the distinct morphology of neurites

a slight decrease with age. This decrease was more appar-
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area 18 (Fig. 6B). Similarly, MSL decreased from the
younger group to the older group by 12.4% in area 10 and
by 9.4% in area 18 (Fig. 7B). In general, distal segment
lengthwas substantially greater (TDL, 63.1%;MSL, 80.9%)
than proximal segment length. Proximal segment TDL
decreased an average of 8.0% from the younger group to
the older group for both cortical areas, whereas distal TDL
decreased an average of 10.8% (Fig. 6C). Comparable

decreases were observed in proximal (10.1%) and distal
(11.6%) MSL measures (Fig. 7C). Examination of the
dendritic envelope revealed that the middle of the den-
dritic tree (segment orders 3, 4, and 5) most clearly
differentiated age groups and Brodmann areas (Fig. 6D).
The MSL of each segment order increased in a somatofugal
pattern, with consistent age-related decreases in the first
five segment orders (Fig. 7D).

A significant BRODMANN nested within AGE effect
obtained for TDL [F(22,396) ! 2.94, P " 0.0002] but not
MSL. TDL was higher in area 10 than in area 18 for all but
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a slight decrease with age. This decrease was more appar-
ent in comparisons of the younger and the older groups,
where TDL decreased by 8.9% in area 10 and by 10.7% in
area 18 (Fig. 6B). Similarly, MSL decreased from the
younger group to the older group by 12.4% in area 10 and
by 9.4% in area 18 (Fig. 7B). In general, distal segment
lengthwas substantially greater (TDL, 63.1%;MSL, 80.9%)
than proximal segment length. Proximal segment TDL
decreased an average of 8.0% from the younger group to
the older group for both cortical areas, whereas distal TDL
decreased an average of 10.8% (Fig. 6C). Comparable

decreases were observed in proximal (10.1%) and distal
(11.6%) MSL measures (Fig. 7C). Examination of the
dendritic envelope revealed that the middle of the den-
dritic tree (segment orders 3, 4, and 5) most clearly
differentiated age groups and Brodmann areas (Fig. 6D).
The MSL of each segment order increased in a somatofugal
pattern, with consistent age-related decreases in the first
five segment orders (Fig. 7D).

A significant BRODMANN nested within AGE effect
obtained for TDL [F(22,396) ! 2.94, P " 0.0002] but not
MSL. TDL was higher in area 10 than in area 18 for all but
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the virtually complete loss of basilar dendrites. Scale bars ! 50 µm.

Fig. 4. Sample tracings of cells from both cortical areas in the younger group (#50 years). On the
whole, area 10 neurons appear somewhat more complex than area 18 neurons. Moreover, spine
number/density are particularly high in M14 and M23 over F34 and F48. Scale bars ! 100 µm.
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ent in comparisons of the younger and the older groups,
where TDL decreased by 8.9% in area 10 and by 10.7% in
area 18 (Fig. 6B). Similarly, MSL decreased from the
younger group to the older group by 12.4% in area 10 and
by 9.4% in area 18 (Fig. 7B). In general, distal segment
lengthwas substantially greater (TDL, 63.1%;MSL, 80.9%)
than proximal segment length. Proximal segment TDL
decreased an average of 8.0% from the younger group to
the older group for both cortical areas, whereas distal TDL
decreased an average of 10.8% (Fig. 6C). Comparable

decreases were observed in proximal (10.1%) and distal
(11.6%) MSL measures (Fig. 7C). Examination of the
dendritic envelope revealed that the middle of the den-
dritic tree (segment orders 3, 4, and 5) most clearly
differentiated age groups and Brodmann areas (Fig. 6D).
The MSL of each segment order increased in a somatofugal
pattern, with consistent age-related decreases in the first
five segment orders (Fig. 7D).
A significant BRODMANN nested within AGE effect

obtained for TDL [F(22,396) ! 2.94, P " 0.0002] but not
MSL. TDL was higher in area 10 than in area 18 for all but
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whole, area 10 neurons appear somewhat more complex than area 18 neurons. Moreover, spine
number/density are particularly high in M14 and M23 over F34 and F48. Scale bars ! 100 µm.
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a slight decrease with age. This decrease was more appar-
ent in comparisons of the younger and the older groups,
where TDL decreased by 8.9% in area 10 and by 10.7% in
area 18 (Fig. 6B). Similarly, MSL decreased from the
younger group to the older group by 12.4% in area 10 and
by 9.4% in area 18 (Fig. 7B). In general, distal segment
lengthwas substantially greater (TDL, 63.1%;MSL, 80.9%)
than proximal segment length. Proximal segment TDL
decreased an average of 8.0% from the younger group to
the older group for both cortical areas, whereas distal TDL
decreased an average of 10.8% (Fig. 6C). Comparable

decreases were observed in proximal (10.1%) and distal
(11.6%) MSL measures (Fig. 7C). Examination of the
dendritic envelope revealed that the middle of the den-
dritic tree (segment orders 3, 4, and 5) most clearly
differentiated age groups and Brodmann areas (Fig. 6D).
The MSL of each segment order increased in a somatofugal
pattern, with consistent age-related decreases in the first
five segment orders (Fig. 7D).

A significant BRODMANN nested within AGE effect
obtained for TDL [F(22,396) ! 2.94, P " 0.0002] but not
MSL. TDL was higher in area 10 than in area 18 for all but

Fig. 3. Photomicrographs of degenerated neurons from F106. A: From area 18. B: From area 10. Note
the virtually complete loss of basilar dendrites. Scale bars ! 50 µm.

Fig. 4. Sample tracings of cells from both cortical areas in the younger group (#50 years). On the
whole, area 10 neurons appear somewhat more complex than area 18 neurons. Moreover, spine
number/density are particularly high in M14 and M23 over F34 and F48. Scale bars ! 100 µm.
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a slight decrease with age. This decrease was more appar-
ent in comparisons of the younger and the older groups,
where TDL decreased by 8.9% in area 10 and by 10.7% in
area 18 (Fig. 6B). Similarly, MSL decreased from the
younger group to the older group by 12.4% in area 10 and
by 9.4% in area 18 (Fig. 7B). In general, distal segment
lengthwas substantially greater (TDL, 63.1%;MSL, 80.9%)
than proximal segment length. Proximal segment TDL
decreased an average of 8.0% from the younger group to
the older group for both cortical areas, whereas distal TDL
decreased an average of 10.8% (Fig. 6C). Comparable

decreases were observed in proximal (10.1%) and distal
(11.6%) MSL measures (Fig. 7C). Examination of the
dendritic envelope revealed that the middle of the den-
dritic tree (segment orders 3, 4, and 5) most clearly
differentiated age groups and Brodmann areas (Fig. 6D).
The MSL of each segment order increased in a somatofugal
pattern, with consistent age-related decreases in the first
five segment orders (Fig. 7D).

A significant BRODMANN nested within AGE effect
obtained for TDL [F(22,396) ! 2.94, P " 0.0002] but not
MSL. TDL was higher in area 10 than in area 18 for all but

Fig. 3. Photomicrographs of degenerated neurons from F106. A: From area 18. B: From area 10. Note
the virtually complete loss of basilar dendrites. Scale bars ! 50 µm.

Fig. 4. Sample tracings of cells from both cortical areas in the younger group (#50 years). On the
whole, area 10 neurons appear somewhat more complex than area 18 neurons. Moreover, spine
number/density are particularly high in M14 and M23 over F34 and F48. Scale bars ! 100 µm.
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a slight decrease with age. This decrease was more appar-
ent in comparisons of the younger and the older groups,
where TDL decreased by 8.9% in area 10 and by 10.7% in
area 18 (Fig. 6B). Similarly, MSL decreased from the
younger group to the older group by 12.4% in area 10 and
by 9.4% in area 18 (Fig. 7B). In general, distal segment
lengthwas substantially greater (TDL, 63.1%;MSL, 80.9%)
than proximal segment length. Proximal segment TDL
decreased an average of 8.0% from the younger group to
the older group for both cortical areas, whereas distal TDL
decreased an average of 10.8% (Fig. 6C). Comparable

decreases were observed in proximal (10.1%) and distal
(11.6%) MSL measures (Fig. 7C). Examination of the
dendritic envelope revealed that the middle of the den-
dritic tree (segment orders 3, 4, and 5) most clearly
differentiated age groups and Brodmann areas (Fig. 6D).
The MSL of each segment order increased in a somatofugal
pattern, with consistent age-related decreases in the first
five segment orders (Fig. 7D).

A significant BRODMANN nested within AGE effect
obtained for TDL [F(22,396) ! 2.94, P " 0.0002] but not
MSL. TDL was higher in area 10 than in area 18 for all but

Fig. 3. Photomicrographs of degenerated neurons from F106. A: From area 18. B: From area 10. Note
the virtually complete loss of basilar dendrites. Scale bars ! 50 µm.

Fig. 4. Sample tracings of cells from both cortical areas in the younger group (#50 years). On the
whole, area 10 neurons appear somewhat more complex than area 18 neurons. Moreover, spine
number/density are particularly high in M14 and M23 over F34 and F48. Scale bars ! 100 µm.
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where TDL decreased by 8.9% in area 10 and by 10.7% in
area 18 (Fig. 6B). Similarly, MSL decreased from the
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decreases were observed in proximal (10.1%) and distal
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The MSL of each segment order increased in a somatofugal
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