

GMDS 2021

Blinded sample size re-estimation in a paired diagnostic study

Maria Stark, Antonia Zapf September 27, 2021

University Medical Center Hamburg-Eppendorf

CT and PET/CT to diagnose pancreatic cancer

[McCray et al., 2017]

Procedure of a paired diagnostic study

Sample size calculation

Fixed vs. Adaptive Design

Example

Assumptions: $\alpha = 5\%$ (two-sided), $\beta = 20\%$					[McCray et al., 2017]	
Diagnostic te	est	Sensitivity	Specificity	$\pi = 47\%$	Diseased	Non-Diseased
СТ		81%	66%	Minimal	$\eta_{12} = 9\%$	$\psi_{ m ND}$ = 14%
PET/CT		90%	80%	disc. results	φ _D = 570	
Initial minimal sample size : N = 186						
Recruitment of 187 individuals						
Re-estimation of nuisance parameters						
based on 187 individuals: $\hat{\pi}=44\%$, $\hat{\psi}_{ m D}=11\%$, $\hat{\psi}_{ m ND}=14\%$						
Re-estimation of sample size: N = 242						
Further recruitment of 55 individuals						
` Analysis ´						
Notation N = to	tal numbe	r of individuals	T	r = prevalence		
D = number of diseased individuals $\psi_{\rm D}$ = number of discordant test results in diseas					diseased population	
ND = number of non-diseased individuals $\psi_{ m ND}$ = number of discordant test rsults in non-diseased p						non-diseased popul.

Simulation study

NotationN = total number of individuals π = prevalenceD = number of diseased individuals ψ_D = number of discordant test results in diseased populationND = number of non-diseased individuals ψ_{ND} = number of discordant test results in non-diseased popul.

Conclusion and next steps

Conclusion:

- Blinded adaptive design developed for paired diagnostic study
- Fixed and adaptive design hold type I error rate
- Power in the fixed design strongly depends on the assumptions. It can be over- or underpowered.
- Power in the adaptive design comes close to the target power, independent of the initial assumptions.

Next steps:

• R-package for adaptive designs in diagnostic studies

References

Connor, R. J. (1987). Sample size for testing differences in proportions for the paired-sample design. Biometrics, 207-211.

McCray, G. P., Titman, A. C., Ghaneh, P., Lancaster, G. A. (2017). Sample size re-estimation in paired comparative diagnostic accuracy studies with a binary response. BMC medical research methodology, 17(1), 102.

Miettinen, O. S. (1968). The matched pairs design in the case of all-or-none responses. Biometrics, 339-352.

Stark, M., Hesse, M., Brannath, W., Zapf, A. (2021) Blinded sample size re-estimation in a comparative diagnostic accuracy study, submitted to Statistical Methods in Medical Research, under Review

Stark, M., Zapf, A. (2020). Sample size calculation and re-estimation based on the prevalence in a single-arm confirmatory diagnostic accuracy study. Statistical Methods in Medical Research, 29(10), 2958-2971.

Zhou, X. H., McClish, D. K., Obuchowski, N. A. (2009). Statistical methods in diagnostic medicine (Vol. 569). John Wiley & Sons.