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Adequate protein turnover is essential for cardiac homeostasis. Different protein quality controls are involved in the
maintenance of proteinhomeostasis, includingmolecular chaperones and co-chaperones, the autophagy-lysosomal
pathway, and the ubiquitin-proteasome system (UPS). In the last decade, a series of evidence has underlined a
major function of the UPS in cardiac physiology and disease. Particularly, recent studies have shown that dysfunc-
tional proteasomal function leads to cardiac disorders. Hypertrophic and dilated cardiomyopathies are the two
most prevalent inherited cardiomyopathies. Both are primarily transmitted as an autosomal-dominant trait and
mainly caused by mutations in genes encoding components of the cardiac sarcomere, including a relevant striated
muscle-specific E3 ubiquitin ligase. A growing body of evidence indicates impairment of the UPS in inherited
cardiomyopathies as determined by measurement of the level of ubiquitinated proteins, the activities of
the proteasome and/or the use of fluorescent UPS reporter substrates. The present review will propose
mechanisms of UPS impairment in inherited cardiomyopathies, summarize the potential consequences of UPS
impairment, including activation of the unfolded protein response, and underline some therapeutic options
available to restore proteasome function and therefore cardiac homeostasis and function. This article is part of
a Special Issue entitled “Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy”.

© 2013 The Authors. Published by Elsevier Ltd.Open access under CC BY-NC-ND license. 
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1. Introduction

In mammalian cells, most of the proteins are in a dynamic state of
flux. The balance of protein synthesis and degradation in each cell is
highly regulated and occurs in a specific manner to maintain cellular
homeostasis. However, under the circumstances of cardiac remodeling
during heart disease this balance can be altered leading to accumulation
nse. 
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of potentially toxic proteins. To ensure that these misfolded or aberrant
proteins are either repaired or removed, a set of molecular mechanisms
works in collaboration or separately as a quality control of the cell. This
quality control consists ofmolecular chaperones and co-chaperones, the
autophagy-lysosomal pathway (ALP), and the ubiquitin-proteasome
system (UPS). In the past years, the functional significance of the UPS in
cardiovascular physiology and disease has become evident. Particularly,
UPS alteration is rapidly gaining recognition as a major player in
the pathogenesis of several cardiac disorders, including inherited
cardiomyopathies.

Cardiomyopathies aremyocardial diseases, characterizedby abnormal
cardiac structure and function, in the absence of other causes that could
produce these abnormalities, such as coronary artery disease, hyperten-
sion, valvular disease, or congenital heart disease [1,2]. Phenotypically,
they are classified into four main forms: hypertrophic, dilated, restrictive,
and arrhythmogenic right ventricular cardiomyopathy [3]. The two most
prevalent familial forms are hypertrophic (HCM) and dilated (DCM)
cardiomyopathies, which are typically associated with mutations in
genes encoding proteins of the sarcomere, cytoskeleton, sarcoplasmic re-
ticulum, T-tubules and others [1].

This review will highlight the current knowledge of UPS function
in the context of HCM and DCM, discuss potential mechanisms and
consequences of UPS dysfunction and propose potential therapeutic
interventions.

2. The ubiquitin-proteasome system

The UPS is indispensable for the highly selective degradation ofmost
intracellular cytosolic, nuclear, and myofibrillar proteins. It controls
many fundamental biological processes such as cell proliferation, adap-
tation to stress and cell death, and its major function is to prevent accu-
mulation of damaged, misfolded and mutant proteins [4]. Degradation
of proteins by the UPS is an ATP-dependent multistage process that re-
quires first ubiquitination of the target protein prior to its degradation
by the 26S proteasome [5,6].

Ubiquitination of the target protein is achieved via an enzymatic
cascade involving the concerted action of E1 (ubiquitin-activating), E2
(ubiquitin-conjugating) and E3 (ubiquitin ligase) enzymes. While
there are two E1, about 40 E2 and more than 600 E3 enzymes have
been described in mammals [6,7]. The process of ubiquitination occurs
with spatial, temporal and substrate specificity, which is dictated by the
E3 ubiquitin ligases. The E3 ubiquitin ligases have been broadly classified
into 2 main categories based on structural similarities: the RING (really
interesting new gene) finger domain-containing proteins including the
RING-related E3s such as the U-box proteins, and the HECT (homologous
to E6-AP carboxy-terminus) domain-containing proteins [7,8]. In addi-
tion, hybrids of RING-finger and HECT E3 ubiquitin ligases exist. Recent
reviews, including one in the current issue, gave an update on the
known striated muscle-specific E3 ubiquitin ligases ([9,10], Willis et al.,
in press). The last identified cardiac-specific E3 ubiquitin ligase is the
F-box protein Fbxl22, which promotes degradation of α-actinin and
filamin C [11].

The eukaryotic 26S proteasome is a large, multicatalytic protein
complex composed of two subcomplexes: the 20S core particle capped
by either one or two 19S regulatory particles (for a detailed description,
see [12]). The function of the 19S regulatory particle is to recognize,
deubiquitinate, and unfold target proteins, and then to translocate
them into the 20S core particle, which houses the proteolytic activities
within its central chamber. Three distinct proteolytic activities exist,
namely the chymotrypsin-like, trypsin-like and caspase-like activities,
and each cleaves preferentially after particular amino acid residues.
Many structurally diverse inhibitors of these activities have been dis-
covered or developed and were recently summarized [13].

Over the last decade, methods for assessment of UPS function have
been established. The evaluation of the UPS includes the determination
of steady-state levels of ubiquitinated proteins, ubiquitinating and
deubiquitinating enzymes, and proteasomal subunits by Western blot.
In addition, measurements of the proteolytic activities using synthetic
fluorogenic substrates are often performed, despite the disadvan-
tage that these small substrates can easily enter the 20S core in an
ubiquitination-independent manner and therefore do not reflect the
highly-regulated entry of substances into the 20S core. To get insights
into the dynamic behavior of the UPS in living cells, fluorescent-labeled
UPS components, including fluorescent ubiquitin and fluorescent-
tagged proteasomal subunits, have been generated [14]. These tools
allowed the discovery of novel features of the UPS in diverse cellular pro-
cesses, including its different locations such as in the inner surface of the
nuclear envelope, the endoplasmic reticulum, or its homogenous distri-
bution in cells. Related to these studies, transgenic reporter mouse
models expressing fluorescent substrates of the UPS were then created
to decipher the role of the UPS in the whole animal [15,16].

3. The ubiquitin-proteasome system in familial cardiomyopathies

Several disorders, including neurodegenerative and cardiovascular
diseases exhibit organ failure due, at least in part, to toxic protein accumu-
lation [5,9,17,18]. Most cases of heart failurewith hypertrophic, dilated or
ischemic cardiomyopathies exhibit accumulation of ubiquitinated pro-
teins [19,20], abnormal protein aggregation such as preamyloid oligomer
formation [21,22], and altered proteasomal activities [23–25]. A body of
evidence indicates UPS alterations in inherited HCM and DCM and is
discussed below.

3.1. The ubiquitin-proteasome system in hypertrophic cardiomyopathy

HCM is the most prevalent cardiac genetic disease (1:500), charac-
terized by left ventricular hypertrophy (LVH), increased interstitial
fibrosis, and diastolic dysfunction [26–28]. HCM is considered as a
sarcomeropathy, transmitted in an autosomal-dominant fashion with
an incomplete penetrance, and caused by more than 1000 individual
mutations in (at least) 10 genes encoding proteins of the cardiac
contractile unit [1,28–30]. Most of the disease genes exhibit missense
mutations that are expected to produce stable full-length mutant pro-
teins. However, in some HCM genes, mutations are mainly frameshift
leading to a premature stop codon and C-terminal truncated polypep-
tides. This is the case for the most frequently mutated gene, MYBPC3,
encoding cardiac myosin-binding protein C (cMyBP-C; [29]) and for a
much less frequently mutated gene, FHL1, encoding four-and-a-half
LIM domain protein 1 [31].

It has been shown that truncated cMyBP-Cs resulting from human
MYBPC3mutations are unstable, notwell incorporated into the sarcomere
and finally degraded by the UPS after gene transfer in rat cardiac
myocytes [32,33]. Continuous degradation of mutant cMyBP-C proteins
led toUPS impairment as shownby the accumulation of theUPS substrate
UbG76V-DsRed [33]. The muscle-specific E3 ubiquitin ligase involved was
then found to be atrogin-1, whereas MuRF1 did contribute to lowering
cMyBP-C level at the mRNA level after gene transfer in cardiac myocytes
[34]. The expression of a missense E334KMYBPC3mutation also resulted
in UPS impairment and accumulation of pro-apoptoticmarkers, ion chan-
nels and Ca2+ handling proteins after gene transfer in cardiac myocytes
[35,36]. The knock-in of the most frequent human MYBPC3 mutation
(c.772GNA; 13% of unrelated HCM patients, likely with a founder effect
in Toscany; [37]) into the mouse genome revealed that its expression is
regulated by both the nonsense-mediated mRNA decay (NMD) and UPS
[38]. Moreover, in both homozygousMybpc3-targeted knock-in (KI) and
knock-out (KO) mice, which developed LVH with systolic and diastolic
dysfunction [38–40], the activities of the proteasome were elevated
during the first 3 months of age and positively correlated with the
degree of LVH [41]. Interestingly, then, the global activity of the protea-
some was impaired with aging only in the KI mice (but not in KO), as
shown by the accumulation of the UPS substrate UbG76V-GFP protein
in the heart [41]. Similarly, adrenergic stress induced the same extent
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of LVH (but with a specific septum involvement) in heterozygous
Mybpc3-targeted KI and KO mice as in wild-type mice, but induced a
marked reduction in proteasome activity only in heterozygous KI mice
[42]. Reduced proteasome activities were found in human myocardial
tissue of HCM patients, particularly in those carrying MYBPC3 gene
mutations [24]. Whether UPS impairment contributes to the develop-
ment of HCM in human is unclear but mouse studies strongly support
the view that UPS impairment results from the combination of altered
cardiac phenotype plus stress in mice exhibiting a Mybpc3 mutation.

BesidesMYBPC3, other disease genes need to be underlined, even if
mutations were rare and found in isolated cases of HCM. For example,
the expression of missense and truncating FHL1 mutations as well as
missense mutations in ANKRD1, encoding ankyrin repeat domain 1,
were markedly regulated by the UPS after gene transfer in cardiac
myocytes or in rat engineered heart tissue (EHT; [31,43]). ANKRD1 inter-
acts with the sarcomere-specificMuRF1 andMuRF2 [44], suggesting that
its degradation could be mediated by MuRF1. Interestingly, mutations in
TRIM63 encoding MuRF1 cause isolated cases of HCM and reduced the
UPS-mediated degradation of mTOR-S6K hypertrophic signaling path-
way in transgenic mutant mice [45].
3.2. The ubiquitin-proteasome system in dilated cardiomyopathy

DCM is characterized by increased ventricular dimensions, contractile
dysfunction andmyocardialfibrosis [2]. In 20–50%of casesDCM is familial
and inherited primarily in an autosomal-dominant mode [1]. The genetic
basis of DCM is far more heterogeneous than that of HCM. More than 50
single genes are associated with DCM, several of which also cause HCM
[46]. The DCM genes encode components of the sarcomere, sarcolemma,
nuclear envelope, cytoskeleton, mitochondria, and proteins involved in
Ca2+ handling [1,46].Most of DCMcases result from sarcomere genemu-
tations,with themajority (25%) attributed to truncatingmutations in TTN,
encoding titin [47].

As for HCM, UPS impairment might also play a role in human or
experimental models of familial DCM. While MYBPC3 is the paradigm
for UPS impairment in HCM, for DCM these are CRYAB encoding
α-B-crystallin and DES encoding desmin. Mutations in CRYAB or DES
resulted in accumulation of mutant proteins and severe DCM in
desmin-related (cardio)myopathy (DRM; [48,49]). A mouse model of
DRM, obtained by overexpression of the R120G mutant CRYAB
(CryABR120G) recapitulated the human phenotype [50] and exhibited
marked UPS impairment as revealed by GFPdgn-based UPS reporter
mice before the development of hypertrophy and heart failure [51].
Similar observations were made in mutant Des-D7 transgenic mice
[52,53]. In both DRMmouse models, UPS impairment started before the
cardiac phenotype and seems to concern the delivery of ubiquitinated
proteins into the 20S proteasome.

Other genes associated with DCM are also subject to UPS-mediated
regulation. This is the case for LMNA encoding lamins A/C, which are
proteins of the nuclear envelope. LMNA mutations cause DCM with
conduction and/or rhythm defects [54]. Heterozygous LmnaΔK32/+ mice
developed DCM and heart failure, and finally died between 35 and
70 weeks of age [55]. DCM was triggered by lamin haploinsufficiency,
due to rapid degradation of ΔK32-lamin mutant by the UPS, followed
by UPS impairment, leading to accumulation of toxic ΔK32-lamin [55].
A missense mutation in NKX2.5, associated with congenital heart disease
and adult-onset DCM, resulted in UPS impairment after gene transfer in
COS cells [56]. In a recent unbiased approach that aimed at identifying
modifying pathways in mouse models of DCM carrying mutant muscle
LIM protein, calsarcin-1 or δ-sarcoglycan, alterations of gene expression
ofUPS components emerged as themost significant predictor of impaired
contractile function [57]. In human DCM and end-stage heart failure,
marked accumulation of ubiquitinated proteins is a common feature,
whereas contradictory findings were obtained for proteasomal activities
[19,23–25]. Whether UPS impairment contributes to the development
of DCM in human is not resolved yet, but mouse studies support this
view.

3.3. Potential mechanisms leading to UPS impairment in cardiomyopathies

The mechanisms by which gene mutations lead to UPS impairment
are not fully elucidated. In the absence of external stress, the expression
of the mutation is regulated at several levels by quality control mecha-
nisms in order to reduce as much as possible the amount of misfolded
or aberrant poison polypeptides, which could induce damage in cardiac
myocytes. Missense mutations are expected to produce stable full-
lengthmutantmRNAs and proteins. Misfoldedmutant proteins are rec-
ognized by chaperones (such as Hsp70, Hsp90) and co-chaperones
(such as CHIP, Bag1, Bag3) that will make the decisions about refolding
or degrading them by the UPS and/or the ALP [6]. Therefore, in some
cases, the expression of missense mutations may be tightly regulated
by the protein quality control systems, resulting in low level of full-
length mutant proteins. In the specific case of frameshift or nonsense
mutations, an additional quality control takes place at the mRNA level,
which is the NMD (Fig. 1 [58]). Low levels (or absence) of mutant pro-
teins and the assumed 50% of wild-type proteins, as expected for
autosomal-dominant disease such as cardiomyopathies, result in pro-
tein haploinsufficiency, which leads to the cardiac phenotype. In most
cases, expression of the wild-type allele partially compensates for pro-
tein deficiency. For example, N70% of wild-type cMyBP-C proteins
were detected in septal myectomy of HCMpatients withMYBPC3muta-
tions, even for patients with missense mutations [59–61]. Similarly,
heterozygous Mybpc3-targeted KO mice, which are considered as pure
models of haploinsufficiency, exhibited 75% of cMyBP-C and then devel-
oped septal hypertrophy at 10–11 months of age [40], and heterozygous
Mybpc3-targeted KI mice exhibited 79% of cMyBP-C and developed dia-
stolic dysfunction at 10 weeks of age [38,39]. Finally, heterozygous
LmnaΔK32/+ mice exhibited haploinsufficiency before the development
of DCM [55].

Several mechanisms could lead separately or in combination to UPS
impairment. First, it has been shown that the continuous degradation of
mutant proteins by the UPS saturates this system after gene transfer in
cardiac myocytes or EHTs [31,33,35,55] and in the CryABR120G DRM
mouse model [51,53]. Second, the combination of external stress and
overwhelmed UPS could precipitate the system into impairment
(Fig. 1). This is the case in some HCM and DCM disease mouse models,
in which the UPS continuously degraded mutant proteins in young
adult mice carrying Lmna or Mybpc3 mutation and became saturated
or impaired only after adrenergic stress or aging [38,41,42,55]. In one of
these studies, stress-induced decreased chymotrypsin-like activity was
mainly due to reduced level of the β5-subunit of the proteasome in the
cytosol, which could be due to translocation of the proteasome to another
cellular compartment [41]. Reversible localization of proteasomal compo-
nentswas observed in other conditions. For example, yeast cells that stop
cell cycling relocated the proteasome from the nucleus to the cytosol into
storage granules [62]. In neurodegenerative disorders, the proteasome
system was also relocalized into intracytoplasmic inclusions [63]. Third,
misfolded proteins escaping the surveillance of chaperones and
UPS tend to form aggregates, which are potentially toxic to the cell.
Supporting this, the group of Robbins showed that intracellular
amyloidosis was highly prevalent in cardiac myocytes derived from
human HCM or DCM hearts [21]. Furthermore, protein aggregation it-
self impaired proteasome function in cardiac myocytes [64], forming a
vicious cycle. Fourth, increased oxidative stress also results in protein
aggregation. In the case of aging, this could be due to increased free
radicals production by damaged aging mitochondria [65]. Oxidative
stress induced protein oxidation and aggregation of oxidized proteins,
which bind to the 20S proteasome and irreversibly inhibit its activity
[66]. This could cause a vicious cycle and also lead to accumulation of
oxidized proteins, which are normally degraded by the proteasome
system. Fifth, an altered assembly of the proteasome or a switch in the
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distribution of proteasomal subpopulations [67] could lead to UPS im-
pairment. A recent study demonstrated an impaired docking of the
19S to the 20S in human end-stage heart failure [68], which could affect
the degradation capacity of the proteasome andmay explain the dimin-
ished proteasomal activity found in human failing hearts [24]. Finally,
regulation of the proteasome system involves post-translational
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components contributes to UPS impairment in cardiomyopathies. Inter-
estingly, reduced PKA-mediated phosphorylation of contractile proteins,
such as cardiac troponin I and cMyBP-C was found in HCM [60,61,74]
and more generally in human and experimental models of heart failure,
such as chronic adrenergic stimulation [75,76].

3.4. Potential consequences of UPS impairment

UPS impairment could have several consequences in cardiac
myocytes (Fig. 2). A number of key proteins involved in cardiac hyper-
trophy and apoptosis pathways are either targets or components of
the UPS. For instance, several signaling proteins, such as β-catenin and
calcineurin, which mediate cardiac growth (including pathological
hypertrophy) are normally degraded by the UPS [77,78]. Similarly, p53
is a target of the E3 ubiquitin ligase MDM2 [79]. Therefore, proteasomal
impairment could result in increased levels of pro-hypertrophic and
pro-apoptotic factors. It has been shown that UPS impairment activated
the calcineurin-NFAT pathway and promoted maladaptive remodeling
in cardiac myocytes [80]. Furthermore, reduced proteasomal activities
were associated with increased levels of pro-apoptotic p53 in human
HCM and failing hearts [24]. Finally, the expression of the HCM
p.Glu334LysMYBPC3mutation in cardiac myocytes induced UPS impair-
ment, accumulation of pro-apoptotic factors and alteration of Ca2+ han-
dling that could result in arrhythmias [35,36].

UPS impairment could also lead to accumulation of unfolded or
misfolded proteins and aggregation of proteins (Fig. 2). This might
result in ER stress, leading to an adaptive response, which is known as
the unfolded protein response (UPR). The UPR promotes attenuation
of protein synthesis, transcriptional activation of chaperone genes and
activation of ER-associated degradation (ERAD) in order to reduce the
load of misfolded proteins [81,82]. If the attempts to resolve the ER
stress fail or the UPR is prolonged, UPR-mediated signaling pathways
that lead to apoptosis are initiated. An inadequately working UPS (or
in this case ERAD) probably stimulates the switch from adaptive to
pro-apoptotic response. This hypothesis is supported by the demonstra-
tion that proteasome inhibition induced ER-initiated cardiac myocyte
death via CHOP-dependent pathways [83]. Of note, accumulation and/or
aggregation of misfolded proteins could itself force UPS impairment,
forming thereby a detrimental feedback loop.

Whereas the UPS usually degrades the majority of proteins, the
ALP is the other proteolytic system which is primarily responsible
for degradation of (generally) long-lived or aggregated proteins
and cellular organelles [6,84]. The ALP engulfs proteins or organelles
into autophagosomes, which subsequently fuse with lysosomes to
form auto(phago)lysosomes, in which lysosomal proteases degrade
autophagosomal content [85]. Although autophagy is generally consid-
ered to be independent of the UPS, growing lines of evidence indicate
that the UPS and ALP act as a consortium in the removal of misfolded
proteins [84,86,87]. Another potential consequence of UPS inhibition
is the ALP activation. Several proteins such as p62, NBR1 and HDAC6
seem to play a major role in the interplay between the UPS and ALP
[6,84]. Proteasome inhibition activated autophagy in vitro and in vivo,
likely as a compensatory mechanism to alleviate proteotoxic stress
[87–89].

4. Potential therapeutic UPS interventions

Since the UPS plays a role inmany fundamental biological processes,
targeting this system for therapy is complex. In the last decade, inhibi-
tion of the proteasome has come into focus for the treatment of cardiac
diseases. The irreversible proteasome inhibitor epoxomicin has been
demonstrated to completely prevent the development of LVH in a
mouse model of short-term pressure overload induced by transverse
aortic constriction (TAC; [90]). Similarly, partial inhibition of the protea-
somewith low doses of the reversible proteasome inhibitor bortezomib
significantly attenuated hypertrophic heart growth in hypertensive
Dahl salt-sensitive rats [91]. Furthermore, administration of epoxomicin
two weeks after TAC, i.e. at a stage of pronounced hypertrophy, resulted
in regression of hypertrophy and stabilization of cardiac function in
mice [92]. Comparably, treatmentwith the irreversible proteasome inhib-
itor PS-519 significantly diminished isoprenaline-induced hypertrophy
in mice [93]. However, conflicting data exist that argue against a
cardioprotective role of proteasome inhibition. Chronic administration
of bortezomib induced LVH to a similar extent as induced by TAC and
resulted in heart failure and premature death in mice [80]. Chronic
treatment with the reversible inhibitor MLN-273, an analogue of
bortezomib, led to LVH, diastolic dysfunction and a reduction in cardiac
output in pigs [94]. Importantly, while bortezomib is generally well
tolerated by patientswithmultiplemyeloma, this therapywas associated
with the occurrence of cardiac complications, including cardiac dysfunc-
tion or even heart failure in elderly patients or patients with preexisting
cardiac problems [95–98]. In summary, while complete and sustained
proteasome inhibition, particularly under circumstances in which the
UPS is already dysfunctional, is expected to rather worsen than to rescue
the phenotype, partial or short-term proteasome inhibitionmaymediate
a protective effect in the heart. An alternative therapeutic approach
would consist in specifically targeting E3 ubiquitin ligases to reduce
UPS-mediated protein degradation. For example, small molecule inhibi-
tors of MDM2 have been developed to induce cancer cell death by stabi-
lizing p53 protein levels [99]. However, theywould be not suitable in the
therapy of cardiac diseases due to enhanced cardiac apoptosis. Similarly,
it has been shown that the UPS-mediated degradation of the cyclin-
dependent kinase inhibitor p27 mediated pathological cardiac hypertro-
phy [100]. Therefore, stabilization of p27 level by targeting its specific
E3 ubiquitin ligase SCF-SKP2 or by preventing its degradation using a
specific inhibitor [101] could be beneficial. So far, no molecules targeting
specifically the cardiac E3 ubiquitin ligases have been developed.

On the other hand, and in light of reduced proteasomal activities or
global reduction of proteasome function that was observed in human
and experimental models of cardiomyopathies [24,33,35,36,41,42,
51,55,102], a reactivation of the proteasome function is expected to be
more appropriate and beneficial. Support for this hypothesis came
from a recent study showing that proteasomal enhancement induced
by overexpression of proteasome activator 28 alpha (PA28α) attenuated
cardiac hypertrophy, delayed premature death, and protected against
acute myocardial ischemia/reperfusion injury in a mouse model of DRM
[103]. However, no drugs are currently available to mimic this effect.
The first small compound capable of enhancing proteasome-mediated
protein degradation via inhibiting the deubiquitinase USP14was recently
reported and used for neurodegenerative disorders associated with
proteotoxicity [104]. However, it still remains to be evaluated in cardiac
myocytes and in the heart in vivo. Another way to enhance proteasome
function would be to target protein kinase G (PKG). PKG is activated by
the PDE5 inhibitor sildenafil, which raises cGMP level. Sildenafil elicited
reverse remodeling and improved LV diastolic function in failing patients
and animal models [105–107]. Recently, the group of Wang showed that
sildenafil activated the proteasome system [108]. Therefore, stimulation
of PKG by sildenafil administration is potentially a novel therapeutic
strategy to treat cardiomyopathies associated with UPS impairment.

5. Conclusion— future directions

The UPS regulates several functions involved in cardiac physiology.
The recent identification of HCMgenemutations in a ubiquitin E3 ligase
and dysregulation of several UPS components in HCM or DCM support
the view that the UPS contributes to the pathogenesis of inherited
cardiomyopathies. In light of thefindings of UPS impairment,we believe
that global proteasome inhibition is likely to be harmful, at least as a
long-term treatment for inherited cardiomyopathies. On the other
hand, global activation of the proteasome is likely to be amore promising
approach to pursue. Finally, a comprehensive understanding of the
mechanisms of UPS impairment in different models of inherited
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cardiomyopathies, including cellular and animalmodels aswell as human
failing ventricular samples should result in the discovery of cardiac-
specific targets within the complexity of the UPS for therapeutic benefit.
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