Cell Preparation Guide for Single Cell Sequencing Projects

Sample Quality

- minimal cell debris
- no cell aggregates
- 🟹 at least 70% cell viability
- dying cells increase ambient RNA contamination & cell clumping

Sample Handling

- 🟹 place samples on ice after resuspension/sorting 💥
- store sorted/extracted samples not longer than 30 minutes on ice before handing over the single cell core facility
- x prolonged sample handling negatively impacts sample quality

Pipetting

- Speed: pipette cell suspensions slowly and gently
- fast pipetting causes physical damage to cells by shearing forces

Centrifugation conditions

- adjust centrifugation conditions by to sample type
 - > nuclei: 500 rcf, 5 10 min
 - > small cells: 300 rcf, 5 min
 - large cells: 150 rcf, 3 min
 - avoid excessive centrifugation
 - swinging bucket centrifuge is preferred over fixed angle

Centrifuges Classified by Rotor Type

10X Genomics

Washing and Resuspension

- optimize buffer conditions: 1X PBS (Ca and Mg free) + 0.04% w/v BSA (up to 1% w/v BSA) is recommended for most general sample preparation
 for BEAM-Labeling: use 1X PBS + 2% FBS
- optimize buffer volumes, number of washes and centrifuge conditions to reduce cell loss and debris
- always leave behind ~50 µl supernatant to preserve pellet after centrifugation

- k discarding the entire supernatant during washing and resuspension steps may cause pellet disruption and massive cell loss
- buffers should not contain >0.1 mM EDTA, >3 mM magnesium or surfactants as these interfere with reverse transcription and GEM generation

Straining and Filtering

- ✓ microfluidic channels of 10X Chromium X are <100 µm wide: use pore size of strainer that is larger than the maximum cell diameter, but small enough to catch larger clumps</p>
- filter at the last wash step and not the final cell suspension