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To date, no compounds or interventions exist that treat or prevent sarcomeric cardiomyopathies. Established therapies currently improve the
outcome,but novel therapiesmaybeable tomore fundamentally affect the diseaseprocess andcourse. Investigationsof thepathomechanismsare
generating molecular insights that can be useful for the design of novel specific drugs suitable for clinical use. As perturbations in the heart are
stage-specific, proper timing of drug treatment is essential to prevent initiation and progression of cardiac disease in mutation carrier individuals.
In this review, we emphasize potential novel therapies which may prevent, delay, or even reverse hypertrophic cardiomyopathy caused by sar-
comeric gene mutations. These include corrections of genetic defects, altered sarcomere function, perturbations in intracellular ion homeostasis,
and impaired myocardial energetics.
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This article is part of the Spotlight Issue on Sarcomeric cardiomyopathies: from bedside to bench and back.

1. Current state of therapeutic
approaches in sarcomeric
cardiomyopathies
Prior to the landmark discoveries that hypertrophic cardiomyopathy
[HCM; and later dilated cardiomyopathy (DCM)] was caused by muta-
tions in components of the cardiac sarcomere, clinical management
wasentirely symptom-based. In fact, the currentAHA/ACCHCMguide-
lines released in 2011 still clearly state that direct therapeutic interven-
tion should be focused on symptom relief, not the diagnosis per se.1

Likewise, the recently published 2014 ESC guidelines on HCM manage-
ment describe drug therapies to manage symptoms and complications.2

Although this is a well-supported approach that decreases patient mor-
bidity, it is, by nature, palliative in that it does not alter the natural history
of the progressive cardiovascular remodelling that defines HCM/DCM.
Beta-blockers, calcium channel blockers, and disopyramide are used to
optimize haemodynamics by modulating the effects of existing left ven-
tricular (LV) dysfunction in HCM, whereas patients with inherited DCM
are managed with standard heart failure regimens. Prior to the ‘genetic
era’, this was a reasonable approachbecause patients were not identified
before the onset of symptoms, symptoms that were directly caused by

significant pathogenic LV remodelling. Due to the widespread use
of modern DNA sequencing techniques to perform mutational screen-
ing among the relatives of cardiomyopathy patients, the cohorts of
genotype-positive individuals (mutation carriers) without disease ex-
pression have dramatically increased in recent years.3 The growing
cohorts of mutation carriers who do not yet show cardiac remodelling
have changed our view of the clinical syndrome from a disease of ‘thick
or thin hearts’ to one of a complex longitudinal process that is often
defined by both a distinct preclinical phase and a later stage of remodel-
ling. This modern view of sarcomeric cardiomyopathies coupled with
our advanced understanding of the molecular and cellular mechanisms
that underlie disease pathogenesis sets the stage for advanced, targeted
therapeutics to alter the natural history of sarcomeric cardiomyop-
athies, before end-stage irreversible remodelling occurs. Thus, in the
following section, novel and specific approaches are addressed to the
management of sarcomeric cardiomyopathies, with an emphasis on
HCM (Table 1). Novel therapies to prevent onset and progression of
sarcomeric cardiomyopathies may target the disease-causing gene
directly or intervene with cellular pathomechanims that play a role in
the (early) progression of cardiomyopathy, such as alterations of myofi-
lament Ca2+ sensitivity, ion channel remodelling, perturbations in ener-
getics, and microvascular dysfunction.
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2. Targeting sarcomeric proteins

2.1 Modulation of myofilament Ca21

sensitivity via the thin filament
HCM-associated mutations in myofilament proteins have been asso-
ciated with increased myofilament Ca2+ sensitivity, whereas DCM-
associated mutations have been proposed to underlie reduced
sensitivity of myofilaments to Ca2+.4,5 Although the direct effect of sar-
comericmutations onmyofilamentCa2+ sensitivity changes is underdis-
cussion, increased Ca2+ sensitivity seems to be a common factor in
HCM due to secondary myofilament remodelling (e.g. due to altered
disease-related phosphorylation patterns). The increases in the my-
ofilament response to Ca2+ may contribute to impaired relaxation
and diastolic dysfunction. Although the mechanisms responsible for
increased myofilament Ca2+ sensitivity remain unclear, the use of Ca2+-
desensitizing interventions (Table 1) may be an attractive alternative for
the treatment of sarcomeric cardiomyopathies and alleviation of the
disease-related symptoms (Figure 1). Ideally, Ca2+ desensitizers, by tar-
geting specifically myofilament molecules involved in muscle contrac-
tion rather than the membrane-bound Ca2+-handling molecules,
would avoid altering cytosolic Ca2+ homeostasis which would perturb

the regulation of other Ca2+-based signalling pathways. Ca2+ desensiti-
zers may also have the potential ability to prevent arrhythmias in HCM
patients. This therapeutic advantage of compounds that target sarco-
mere Ca2+ sensitivity was first demonstrated in mouse models char-
acterized by myofilament hypersensitivity to Ca2+ caused by troponin
mutations or by the Ca2+-sensitizing agent EMD 57033.6 In vitro cardiac
muscle from these animal models exhibited significant arrhythmia sus-
ceptibility that was prevented by the myosin inhibitor blebbistatin.6

The protective effect of blebbistatin provided the first direct evidence
that myofilament Ca2+ desensitization is antiarrhythmic and may be
beneficial in the treatment of HCM. The use of Ca2+-desensitizing com-
pounds for the treatment of diastolic dysfunction is practically a novel
idea. So far, the number of Ca2+-desensitizing interventions available
for research, medical trials, or therapeutic use is very limited. Most of
them are at present unsuitable for therapeutic use and can be only
tested in animal models and in in vitro experiments as ‘proofs of
concept’. Investigations of the mechanisms of Ca2+-desensitizing inter-
ventions are generating molecular insights into structural features that
can be useful for the design of novel specific Ca2+-desensitizing drugs.

Due to its central role as the Ca2+ sensor for cardiac muscle contrac-
tion, cardiac troponin C (cTnC) stands out as the obvious target to
modulate cardiac muscle Ca2+ sensitivity (Figure 1). Unfortunately,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Therapies investigated in preclinical and clinical studies

Defect Potential target Potential therapies

Sarcomeric proteins

Myofilament
Ca2+ sensitivity

Thin filament (troponin C) Ca2+ desensitizers
Blebbistatin6

Calmodulin antagonists7–9

Green tea10

b-blocker (nebivolol)a17

Actin–myosin interaction Actin–myosin interaction inhibitors
Blebbistatin, 2,3-butanedione monoxime6

Myosin activity Myosin heavy chain Small molecules
Myosin inhibitors
Myosin activators (omecamtiv mecarbil)28

Gene mutation Mutant genes Gene therapy
Trans-splicing54

mRNA silencing29,30

Gene replacement31

Ion channels

LVOT obstruction
Cardiac remodelling

Ca2+/CaMKII CaMKII inhibition
Small molecules—CaMKII inhibitors88

L-type Ca2+ channel blocker (diltiazem),91,103 ongoing clinical
trial in preclinical HCM104

INaL inhibition (ranolazine)
Na+ channel Sodium channel blocker (disopyramide)a70–74

Ca2+ channel Ca2+ channel blockers (verapamil and diltiazem)a75–77

Arrhythmias K+ channel
Late Na+ current

Class III antiarrhythmic agent (amiodarone)a1,79

INaL inhibitor (ranolazine),60 ongoing clinical trial:
ESTYLE-HCM; EUDRA-CT 2011-004507-20

Diastolic dysfunction Late Na+ current INaL inhibitor (ranolazine)60

Energy deficiency

Vascular dysfunction LVOT obstruction and regional perfusion defects b-Blockers and Ca2+ channel blocker (verapamil)a148

Ca2+ desensitizers (see above)

Disturbed energetics Metabolic substrate modification Metabolic therapy (perhexiline)151

aAlready used in clinic.
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there are only a few compounds that only target cTnC to decrease
sarcomere Ca2+ sensitivity. An alternative approach is to use cTnC as
a target of genetic manipulation. The intrinsic Ca2+-binding properties
of cTnC canbefinelyor grossly tuned todesigncTnC mutant constructs,
which behave as Ca2+ desensitizers in solution systems and in isolated
muscle models. Compounds have been identified that elicit their activity
through binding either the N-terminal regulatory domain or the
C-terminal structural domain of cTnC. Both groups of compounds
likely interfere with the Ca2+-dependent interaction between cTnC
and cardiac troponin I (cTnI) that is crucial in the signalling of muscle con-
traction. Because of the structural homology between cTnC and cal-
modulin (CaM), CaM-binding compounds originally developed as
inhibitors of CaM function may also interact with cTnC and be candi-
dates as modulators of cardiac myofilament Ca2+ sensitivity (Table 1).
Early studies have shown that some hydrophobic CaM antagonists (cal-
midazolium, bepridil, trifluoperazine, chlorpromazine, and pimozide)
stimulatemyofibrillar ATPase activity,whereas others (W7,haloperidol,
and mastoparan) inhibit ATPase activity.7 Among the compounds
of the latter group, W7 has been studied more extensively as a potential
Ca2+ desensitizer of striated muscle myofilaments. W7 [N-(6-
aminohexyl)-5-chloro-1-naphthalenesulfinamide] was designed as a
specific inhibitor of CaM function.8 It binds to both the N- and
C-terminal hydrophobic substrate-binding sites of CaM, inhibiting
binding of CaM to its myosin light-chain kinase target protein.9 W7
has been used to explore a wide range of physiological processes

involving Ca2+ signalling in cardiomyocytes. Previous studies in rabbit
skeletal and mouse cardiac muscles established that W7 inhibits force
and ATPase during Ca2+ activation in both muscle types by reducing
the ability of Ca2+ to activate thin filaments.10 The W7 inhibition is
most likely mediated via specific interactions between W7 and cTnC.
This notion is supported by the observation that W7 binds specifically
to cTnC and not to tropomyosin, actin, or myosin.8 In addition, the pos-
sibility that W7 interferes directly with the actin–myosin interaction is
unlikely as W7 has no effect on in vitro skeletal acto-myosin ATPase ac-
tivity over the range of [W7] required for Ca2+-activated ATPase and
force inhibition (M. Regnier, personal communication).

A number of studies suggest that consumption of green tea decreases
the risk of several pathological conditions. Green tea (Camellia sinensis)
contains catechins as biologically active polyphenols. Major catechins
in green tea are (2)-epicatechin (EC), (2)-epigallocatechin (EGC),
(2)-epicatechin-3-gallate (ECG), and (2)-epigallocatechin-3-gallate
(EGCG). ECG and EGCG have been shown to be particularly effective
against cardiovascular diseases.11 Epicatechin derivatives were found
to significantly decrease pCa50 of force–pCa relationships in skinned
ventricular trabeculae from rabbit hearts in a concentration-dependent
manner.12 EC and EGC had no significant effects on cardiac myofilament
Ca2+ sensitivity, indicating that the galloyl group in ECG and EGCG has
a critical role in the Ca2+-desensitizing effects. NMR spectroscopy
studies provided strong evidence that cTnC is one of the primary
targets for EGCG in the myofilaments.13 The therapeutic effect of

Figure 1 Several myofilament proteins may be target of treatment to reverse primary functional changes of the sarcomeres. CB, cross-bridge; TnC,
troponin C; TnI, troponin I; TnT, troponin T; LC, light chain; C protein, myosin-binding protein C. Modified from Ferrantini et al.154
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EGCG as a Ca2+ desensitizer was analysed in a transgenic mouse model
of HCM expressing the TNNT2 DE160 deletion mutation.12 The mouse
DE160 cTnT myocardium exhibited increased myofilament Ca2+-
sensitivity. EGCG (30 mM) fully reversed the effects of increased myofi-
lament Ca2+ sensitivity of the isolated HCM myocardium. Lower con-
centrations of EGCG were enough to improve the diastolic function
of working hearts of DE160cTnT-Tg mice and increase their cardiac
output. EGCG also restored the Ca2+ transient parameters without
changing myocardial contractility and improved the diastolic dysfunction
without changing the cardiomyocyte resting Ca2+ level. These results
suggest that EGCG restores the impaired cardiac pump function due
to diastolic dysfunction by reversing the increased myofilament Ca2+

sensitivity. EGCG is the first chemical compound that could ameliorate
diastolic dysfunction of HCM, at least partially, through its direct Ca2+-
desensitizing effects on cardiac myofilament. The use of EGCG as a
therapeutic alternative for cardiac dysfunction is particularly interest-
ing because it is attributed to have several benefits including anti-
oxidative,11 anti-inflammatory,14 and vasorelaxant effects15 on the car-
diovascular system. Its cardioprotective effects against ischaemia/
reperfusion injury have been demonstrated as well.16 The use of trans-
genic animals will allow determining its relevance for the treatment of
HCM and the overall effects of Ca2+ desensitization on diastolic
dysfunction.

Amongb-blockers that are commonly used in clinical pharmacother-
apy of cardiovascular diseases, nebivolol has been reported to desensi-
tize cardiac myofilaments.17 In both rabbit and human skinned cardiac
trabeculae, nebivolol depressed maximal tension and displaced the
Ca2+-tension relation to the right, whereas neither propranolol nor car-
vedilol had an effect. Experiments with intact trabeculae confirmed
depressed contractility: when all b-adrenoceptors were blocked by pro-
pranolol, subsequent addition of nebivolol reduced developed twitch
force. The Ca2+-desensitizing effect of nebivolol was related to the bene-
ficial effects on myocardial function reported in situations of oxidative
stress associated with intracellular Ca2+ overload. This preservation of
contractile function by nebivolol might be due to compensation of the
intracellular calcium overload through a shift of the force–Ca2+ relation-
ship into a range where contraction is maintained. The mechanism of the
Ca2+-desensitizing effect of nebivolol, however, remains unaddressed.

2.2 Modulation of thick filament function
The actin–myosin interface is also a potential site of action for Ca2+-
desensitizing drugs (Figure 1 and Table 1). Myosin ATPase inhibitors
such as blebbistatin18 and 2,3-butanedione monoxime have been used
as desensitizing compounds in vitro and as excitation–contraction uncou-
plers for electrophysiological and mechanical studies both in vitro and ex
vivo due to their ability to inhibit acto-myosin force-generating cross-
bridge formation.6,19,20 As stated above, first evidence of the protective
effect of Ca2+ desensitization on arrhythmia susceptibility associated
with increased Ca2+ sensitivity has been given with actin–myosin inter-
action inhibitors.6 However, these compounds characterized by strong
negative inotropic effects and cardiac toxicities are at present unsuitable
for use in intact animals. There are also accessory proteins in the thick fila-
ments that modify the actin–myosin interaction, but have not been expli-
citly investigatedas targets ofCa2+-desensitizingagents.These include the
essential and regulatory light chains of myosin and cardiac myosin-binding
protein C. Both groups of proteins likely regulate cross-bridge kinetics,
and modifications of their protein–protein interactions may be an add-
itional route to alter Ca2+ sensitivity of force generation.

Studies of systems containing some HCM-mutant myosins imply that
the mutant proteins have increased mechanical performance.21– 24

Although the precise impact of specific HCM mutations on the maximal
force-generating capacity of human cardiac sarcomeres in vivo remains
somewhat controversial,25–27 advances in screening methods have
enhanced the development of small molecules acting like cardiac myosin
inhibitors that could become a resource for developing treatments for dis-
eases involving myosin overactivity. These compounds, as well as other
mutation-specific sarcomeric allosteric modulators, could rebalance con-
tractility in HCM, therefore potentially reversing the course of disease.

Myosin activators, on the other hand, are small molecule drugs that
bind to the myosin head, and stimulate its activity without increasing
the cytosolic Ca2+ concentration. As a result, the systolic ejection
time is lengthened. The first molecule omecamtiv mecarbil has been
shown to ameliorate cardiac function by increasing the duration of ejec-
tion without changing the rates of contraction. Therefore, cardiac
myosin activation may provide a new therapeutic approach for sarco-
meric cardiomyopathies leading to DCM with systolic dysfunction.11

2.3 Targeting the genetic cause of
sarcomeric cardiomyopathy by gene therapy
Another obvious therapy for inherited sarcomeric cardiomyopathy
would be to target directly the cause of the disease by gene therapy
(Figure 1 and Table 1). In theory, this could be done by removing the mu-
tation at the mRNAlevelor by replacingendogenousmutant proteins by
functional ones. Gene therapy to prevent or rescue the disease pheno-
type in cardiomyopathy mouse models has emerged in the recent
years,29–33 and therefore paved the way for a causal therapy of sar-
comeric cardiomyopathy in patients. Gene therapy is of particular inter-
est for the severe forms of the disease which result in systolic heart
failure andprematuredeath, forwhichno treatmentsexceptheart trans-
plantationare available.Agrowingbodyof evidence indicates that severe
cardiomyopathies are due to the presence of double heterozygous,
compound heterozygous, or homozygous mutations in sarcomeric
genes.34–47 Specifically, all infants with truncating bi-allelic MYBPC3
mutations (expected to result in low level or the absence of cMyBP-C
in the cardiac sarcomere) present atbirthwith neonatal cardiomyopathy
(HCM,DCM,orLVnon-compaction),which rapidlyevolves into systolic
heart failure and death within the first year of life.34 –41,43,48

Gene therapy, a concept introduced as early as 1947,49 has been re-
discovered in the last decade with the development of adeno-associated
viral vectors (AAVs) exhibiting high-efficiency and long-lasting cardiac
gene expression following a single administration. This has accelerated
the field of gene therapy for heart failure, targeting proteins involved
in calcium handling such as phospholamban50 and S100A1.51 The suc-
cessful completion of Phase II trials of SERCA2a gene therapy demon-
strated the feasibility and safety of AAV1-mediated gene transfer as
well as the improvement of the symptoms and exercise capacity of
patients with advanced heart failure.52 Using a combination of cardiac
AAV serotype and cardiomyocyte-specific promoter, it is now possible
to specifically target the heart after systemic administration.53

Different approaches have been evaluated in the context of HCM.
The first strategies target the endogenous mutant sarcomeric pre-
mRNA or RNA such as exon skipping, spliceosome-mediated RNA
trans-splicing (SMaRT), or RNA silencing.29 –31,54 In SMaRT, two inde-
pendently transcribed RNA molecules, a target mutant pre-mRNA
and a therapeutic pre-trans-splicing molecule (delivered by AAV), are
spliced together (for a detailed review, see Wally et al.55). As a result,
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a full-length repaired mRNA is formed. Trans-splicing has the potential to
treat autosomal-dominant diseases by repairing a mutant pre-mRNA. A
recent proof-of-concept study demonstrated that 5′-trans-splicing
repaired Mybpc3 mRNA in cardiac myocytes and in vivo in homozygous
Mybpc3-targeted knock-in (Mybpc3-KI) mice, even if the efficiency was
not sufficient to prevent the disease phenotype.54 An alternative ap-
proach is the in-frame skipping of mutated exons by antisense oligonu-
cleotides (AONs), which mask exonic splicing enhancer motifs and
therefore prevent the binding of regulatory splicing proteins that
mediate exons inclusion into the mature mRNA.56,57 The resulting pro-
teins,which are internally deletedof a small part, should remain function-
al. This strategy has been recently evaluated in Mybpc3-KI mice, using
two AONs that were expected to produce an in-frame deletion of
two exons. AONs were introduced in tandem into U7 small nuclear
RNA and packaged in AAV9. A single systemic administration of AAV9
in newborn Mybpc3-KI mice produced a stable functional protein and
transiently prevented the cardiac disease phenotype.30 More recently,
allele-specific silencing of mutant Myh6 mRNA by AAV-mediated
RNAi delivery delayed the expression of the disease phenotype
(induced by cyclosporine) in heterozygous Myh6-KI mice.29

The alternative strategy consists of adding a functional sarcomeric
protein in place in the sarcomere. Although this has been widely used
to create transgenic animals,58 only two groups have envisioned this ap-
proach for sarcomeric cardiomyopathies in mouse models.31,32 The
sarcomere is indeed a tightly regulated system in which the stoichiometry
of all components is preserved. Therefore, additional expression of any
sarcomeric protein is expected to replace in part or completely the en-
dogenous protein level in the sarcomere. This approach is particularly at-
tractive for MYBPC3 mutations that result in low level or the absence of
mutant proteins. A very recent study has evaluated whether replacement
of endogenous mutant cMyBP-C byexogenous wild-type cMyBP-C could
prevent the cardiac phenotype in homozygous Mybpc3-KI mice, which
genetically mimic the situation of the severe forms in patients.31 A single
systemic injection of AAV9 encoding cMyBP-C under the control of
human cardiac troponin T promoter in neonatal mice, which do not
exhibit a disease phenotype at this stage, was sufficient to enable a long-
term prevention (until 34 weeks) of the disease phenotype, including LV
hypertrophy, diastolic, and systolic dysfunction. Importantly, these data
show that endogenous mutant cMyBP-C proteins are almost fully
replaced by exogenous functional cMyBP-C. These data paved the way
for a causal therapy of severe neonatal sarcomeric cardiomyopathy due
to bi-allelic MYBPC3 mutations.

3. Targeting ion channels in HCM
Drugs targeting ion channels are an important component of pharmaco-
logical therapy for many HCM patients (Table1).59 Tobetter understand
how drugs affect the pathophysiological determinants of symptoms and
arrhythmias in HCM patients, it is useful to know how this disease alters
excitation–contraction coupling (ECC) in adult ventricular cardiomyo-
cytes. A recent study characterized the abnormalities of ECC occurr-
ing in the human HCM myocardium as concomitant determinants of
diastolic dysfunction and arrhythmias in this disease.60 Myocardial
specimens from the interventricular septum of obstructive patients
undergoing surgical myectomy were compared with non-failing non-
hypertrophic surgical patients. Action potential duration (APD) was
markedly prolonged in HCM cardiomyocytes compared with controls
and was associated with prolonged QTc in patients from the HCM
group, a common feature in patients with this disease.61 APD

prolongation in HCM cardiomyocytes led to the increased risk of
arrhythmogenic early after depolarizations (EADs) and was caused by
an imbalance between inward and outward currents: repolarizing K+

currents were reduced and depolarizing L-type Ca2+ current and late
Na+ current (INaL) were increased. HCM cardiomyocytes also displayed
several abnormalities of intracellular Ca2+ cycling: while the amplitude
of Ca2+ transients was preserved, the kinetics of Ca2+ rise and decay
were markedly slower and diastolic Ca2+ concentration was increased,
resulting in a higher rate of Ca2+waves and delayed after depolarizations
(DADs). Among the determinants of intracellular Ca2+ overload, a
reduced Ca2+ extrusion through the Na+/Ca2+ exchanger (NCX)
played a major role. NCX functional abnormalities were attributed to
intracellular Na+ accumulation due to excessive Na+ entry via an in-
crease in the late Na+ current. The abnormalities of ECC observed in
single cells resulted in slower relaxation and increased diastolic
tension in intact trabeculae isolated from the same samples, suggesting
that alterations of Ca2+ cycling contribute to diastolic dysfunction in
HCM myocardium. On the other hand, systolic function was preserved,
with a slower rate of force development and prolonged twitches.
Increased activity of Ca2+/CaM-dependent kinase II (CaMKII) appeared
to underlie several of the observed functional abnormalities: increased
phosphorylation of Na+ channels and enhanced Na+ current (INaL),

62,63

increased ryanodine receptor phosphorylation caused Ca2+ waves and
DADs,64 and increased phosphorylation of Ca2+ channels slowed Ca2+

current inactivation. Notably, all those changes ultimately lead to
increased intracellular Ca2+ concentration, which is a main driver for
CaMKII activation, thuscreatingaviciouscycle. Indeed, this typeofpositive
feedback from Na–Ca–CaMKII back to higher [Na]i and more spontan-
eous sarcoplasmic reticulum (SR) Ca2+ release may be important in this
pathological effect.65 Pharmacological intervention should therefore be
aimed at impeding intracellular Ca2+ overload, by inhibiting either
CaMKIIoroneof theother pathways ofCa2+entryandcytosolic accumu-
lation. The features of maladaptive remodelling in HCM cardiomyocytes,
including electrical anomalies, Ca2+ handling abnormalities, and altera-
tions ofCaMKII signalling, are similar toother forms ofpathological hyper-
trophy,66,67 and thus represent a potential common pathway of disease,
eventually driving the common pathophysiological features occurring in
patients with cardiac hypertrophy, namely arrhythmias and diastolic dys-
function. Alterations of ion channels are central in this process, thus
drugs targeting ion channels directly (or indirectly via CaMKII inhibition)
may play a crucial role in treating hypertrophic remodelling and, in par-
ticular, HCM (Figure 2).

3.1 Targeting ion channels to prevent
detrimental effect of LV outflow tract
obstruction
A principal determinant of symptoms in overt HCM is obstruction of the
LV outflow tract (LVOT), which occurs at rest in approximately one-
third of all patients (rest obstruction). The number of patients with
LVOT increases during exercise (inducible obstruction) to two-thirds
of all patients.68 The generation of a pathological gradient in the LVOT
during systole (.30 mmHg) is determined by the increased systolic
thickening of the upper septum and systolic motion of the (often elon-
gated) anterior mitral valve leaflet towards the septum. When obstruc-
tion is present at rest, LVOT gradients lead to a reduction of cardiac
output and congestive symptoms (e.g. dyspnoea). In patients with indu-
cible obstruction, the generation of gradients during exertion limits ex-
ercise capacity. In symptomatic HCM individuals without obstruction,
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diastolic dysfunction and myocardial perfusion abnormalities determine
reduced exercise capacity and angina.69 Besides b-blockers, disopyra-
mide, a Class Ia sodium channel blocker, has been used largely as a first-
line therapy for obstruction for more than 30 years70 and received a
Class IIa recommendation in the latest HCM guidelines.1 Disopyramide
was shown to reduce LVOT gradients and ameliorate obstructive symp-
toms in two-thirds of treated patients, with a significant benefit on sur-
vival and no apparent pro-arrhythmic effects when used properly.71

However, a significant number of patients cannot tolerate the drug
due to its anti-cholinergic effects and the significant reduction of
cardiac contractility, leading to a decreased ejection fraction (10% on
average).72 Cellular mechanisms underlying the negative inotropic
effect of disopyramide are poorly understood at present. At therapeutic
concentrations (5–10 mM), disopyramide is known to reduce the up-
stroke velocity and the amplitude of action potentials,73 and may thus di-
minish or delay ECC and slowing septal contraction. Moreover, the
reduction of intracellular Na+ is likely to limit Ca2+ levels and contract-
ility via enhancement of Ca2+ extrusion and reduction of Ca2+ entry
through the NCX. In HCM patients, these effects may result in a
slower and reduced force generation by the septum, lower blood flow
acceleration in the LVOT, diminished hydrodynamic pull on the mitral

leaflet, and reduced mitral–septal contact, eventually leading to
reduced outflow gradients.74

Non-dihydropyridine Ca2+ channel blockers such as verapamil and
diltiazem are also commonly employed in symptomatic patients with
non-obstructive HCM. On the contrary, HCM guidelines stand against
the use of Ca2+ channel blockers in patients with LVOT obstruction
and high gradients at rest,1 due to the risk of severe hypotension, brady-
cardia, and syncope mediated by the mild systemic vasodilation. None-
theless, these drugs may be indicated in combination withb-blockers for
patients with inducible obstruction and mild gradients. Verapamil is the
most studied agent in HCM patients, despite a lack of definitive evidence
that Ca2+ channel blockers ameliorate exercise capacity in non-
obstructive symptomatic patients.1 Verapamil and diltiazem exert
their beneficial effects on HCM-related symptoms in part through
their negative inotropic and chronotropic effects and in part via im-
provement of myocardial diastolic function. Reduction of heart rate is
mediated by a direct effect on Ca2+ current in sinoatrial cells and
leads to prolongation of relaxation time. Reduced Ca2+ entry into ven-
tricular myocytes determines a reduction in peak force with no effect on
the speed of force generation, eventually causing a negative inotropic
effect, that may be effective against obstruction.75 In addition, relaxation

Figure2 Treatmentof sarcomeric cardiomyopathies maybe directedat non-sarcomeric targets such as ion channels,b-adrenergic receptors, and Ca2+/
CaMKII. In addition, metabolic therapy, such as perhexiline, maybe targeted at the mitochondria to improve the energetic statusof the heart. Modified from
Coppini et al.60
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time of ventricular myocardium is reduced by Ca2+ channel blockers
with a significant increase of LV early filling rates.76 The latter is likely
to be a consequence of the decreased intracellular diastolic Ca2+,
leading to reduced diastolic tension. Since coronary perfusion occurs
predominantly during diastole, the reduction of diastolic tension after
Ca2+ channel blocker administration leads to increased myocardial
blood flow,77 preventing exercise-induced myocardial ischaemia, a
common occurrence in HCM patients.

3.2 Targeting ion channels to prevent
arrhythmias
While the presence of LVOT strongly affects the symptomatic state of
HCM patients with a largely ‘stable’ phenotype, atrial and ventricular
arrhythmias are the main determinant of the outcome and need to be
addressed by aggressive preventive strategies, which to date are both in-
sufficient and difficult to administer.78 Amiodarone is the most used anti-
arrhythmic agent to prevent ventricular tachycardia and fibrillation in
high-risk HCM patients.1,79 As a Class III antiarrhythmic agent, the
principal mode of action is the inhibition of rapid and slow delayed
rectifier potassium channels (IKr), leading to delayed repolarization.
This could represent a potential risk in HCM patients, who already
suffer from a prolonged QT interval due to APD prolongation.60,61

However, amiodarone exerts a number of additional effects, including
block of L-type Ca2+ current, peak and late Na+ currents; counteracting
the AP prolonging effect of the compound and effectively antagonizing
the pathological arrhythmogenic changes occurring in HCM myocytes,
making it a potentially effective agent to prevent arrhythmias in this
disorder. Nonetheless, clinical evidence suggests that amiodarone
used for primary prevention does not exert a significant benefit in
terms of survival,80 and is to be used only in patients with frequent symp-
tomatic ventricular arrhythmias or to decrease the frequency of effect-
ive shocks in patients with implantable cardioverter/defibrillators.1 On
the other hand, amiodarone is the most commonly used antiarrhythmic
drug to maintain sinus rhythm in HCM patients with paroxysmal atrial
fibrillation.

The previous observations emphasize the lack of effective pharmaco-
logical agents capable of ameliorating diastolic dysfunction and reducing
ventricular arrhythmogenesis in HCM. The inhibitors of INaL may fill this
gap. The first drug of this category, ranolazine, is the only commercially
available INaL inhibitor, currently in use for the treatment of angina. The
molecular effects of ranolazine were recently evaluated in surgical
myocardial samples from HCM patients.60 Consistent with inhibition
of the depolarizing INaL, ranolazine significantly reduced the prolonged
APD in HCM myocytes, thus nearly abolishing the occurrence of
EADs. This effect was paralleled by a marked acceleration of Ca2+ tran-
sients and a reduction of diastolic Ca2+ concentration, the latter more
evident at high frequency of stimulation. Reduced intracellular Na+ ac-
cumulation leading to increased Ca2+ extrusion through the NCX
underlie the beneficial effects of ranolazine on Ca2+ handling in HCM
cardiomyocytes. In addition, normalization of Ca2+ cycling properties
with ranolazine causes a mild reduction of systolic force, an acceleration
of twitch force generation and relaxation, as well as a reduction of dia-
stolic tension in HCM trabeculae, supporting a potential improvement
of diastolic function. Taken together, these observations suggest that in-
hibition of INaL may exert a number of significant beneficial effects in
HCM patients, by reducing both the arrhythmogenic potential and the
intrinsic impairment of diastolic function at the cellular level. These fea-
tures strongly support the use of INaL inhibitors to treat symptomatic

HCM patients without obstruction. Of note, a clinical trial is ongoing,
evaluating the effect of ranolazine on exercise capacity in this class
of patients (RESTYLE-HCM; EUDRA-CT 2011-004507-20). A small
proof-of-concept placebo-controlled clinical trial in patients with
severe diastolic heart failure (RALI-DHF) recently suggested that filling
pressures (LVEDP), pulmonary artery pressures, and wedge pressures
could be reduced by ranolazine.81 Additionally, the slight negative ino-
tropic effect of ranolazine, far from representing a concern for clinical
use, may provide a safe option aimed at reducing septal hypercontracti-
lity and thus may relieve obstruction in HCM patients. Finally, by improv-
ing diastolic function, INaL inhibition has the potential to increase
myocardial perfusion, thus addressingmyocardial ischaemia inHCM.Re-
cently, novel highly selective INaL inhibitors82,83 are in early clinical stages
of development and may represent a valid alternative for HCM treat-
ment in the near future.

3.3 Targeting ion channels to prevent
adverse remodelling in manifest HCM
Studies on several models of hypertrophy highlighted alterations of
intracellular Ca2+ handling, leading to intracellular Ca2+ overload as
central determinants of pathological cardiomyocyte remodelling,
acting via a number of signalling pathways, among which the CaMKII-
dependent cascade plays a central role.84 CaMKII hyperactivation
during disease is associated with activation of hypertrophic gene expres-
sion programme, changes in ion channel or SR protein levels, and may
play a role in enhancing fibroblast growth and extracellular matrix ex-
pansion.85,86 With these mechanisms, CaMKII hyperactivation is likely
to play a crucial role in driving progression of cardiac hypertrophy to
heart failure.87 Sustained activation of CaMKII-dependent pathways
play a central role in determining electro-mechanical myocardial dys-
function in human HCM,60 and may therefore be a highly relevant
target for progression. Direct inhibition of cardiac CaMKII with small
molecules is still in early preclinical development;88 therefore, the best
option to date is to indirectly reduce CaMKII activity by lowering intra-
cellular Ca2+ levels. Inhibition of Ca2+ current appears to be the most
straightforward way of reducing intracellular Ca2+, as the amount of
Ca2+ entering the cytosol via the L-type Ca2+ channels directly modu-
lates CaMKII activity.89 Early reports on the use of L-type Ca2+ channel
blockers in HCM patients showed a reduction of cardiac mass upon
long-term administration.90 Treatment with diltiazem prevented wor-
sening of diastolic dysfunction and limited progression to diastolic
heart failure in HCM Tnnt2 mutant transgenic mice.91 At present,
there is no evidence on whether treatment with L-type Ca2+ channel
blockers is able to reduce CaMKII activation and alter cardiomyocyte
remodelling in HCM.

A clinically relevant therapeutic option to address intracellular Ca2+

overload and reduce CaMKII activity in HCM is pharmacological inhib-
ition of INaL. In pathological settings, there is continuous interplay
among CaMKII, intracellular Ca2+, and INaL. On the one hand, enhanced
CaMKII activity due to increased intracellular Ca2+ or oxidative stress
increases INaL via specific phosphorylation of cardiac Na+ channel
Nav1.5;63,92,93 on the other hand, increased INaL determines elevated
intracellular Ca2+ and thus activates CaMKII.94 Such complex interplay
is relevant for the progression of diastolic dysfunction in cardiac
disease and may play a role in favouring decompensation of stable hyper-
trophy.95 INaL inhibition may thereforebe aviable option for interrupting
the CaMKII-dependent remodelling pathway in HCM. In support of this
hypothesis, acute treatment with ranolazine led to a reduction of
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diastolic Ca2+ levels in human HCM cardiomyocytes.60 Over time, this
effect may lead to overall lower CaMKII activity, eventually affecting the
functional and structural remodelling of HCM myocardium, with
possible implications for disease progression.96 In keeping with this ob-
servation, ranolazine administration has been shown to reduce the
degree of myocyte hypertrophy and interstitial fibrosis in experimental
models with moderate heart failure.97 In principle, INaL inhibition is a
promising therapeutic strategy for HCM patients, with a wide range of
potentially positive actions, which may critically impact on acute symp-
toms as well as on the natural history of the disease.

3.4 Targeting ion channels to prevent
disease progression in mutation carriers
During the so-called pre-hypertrophic phase of HCM, periodic non-
invasive cardiac screening is performed to identify early markers of
disease, such as mitral valve abnormalities or a mild impairment of dia-
stolic function.98,99 However, no clinical strategy exists to prevent
disease progression in mutation carriers. While the primary disease
cause is the gene mutation of a sarcomeric protein, alterations in intra-
cellular Ca2+ handling are among the earliest secondary changes occur-
ring in HCM myocardium, as confirmed by studies in transgenic or
targeted mouse models.100 –102 Intracellular Ca2+ overload may be
present in the pre-hypertrophic phase of the disease. Thus, reducing
intracellular Ca2+ in this critical phase is likely to affect phenotype pres-
entation. This hypothesis has been tested by treating transgenic mice
carrying the R403Q myosin heavy-chain mutation with diltiazem since
birth.103 Ca2+ channel block, by diminishing intracellular Ca2+ overload,
was able to reduce the development of hypertrophy, intramyocardial fi-
brosis, and myocyte disarray, to prevent pathological changes of SR
protein expression, and to limit the extent of diastolic and systolic dys-
function in the adult mice. Such changes may well be mediated by alter-
ation of CaMKII-mediated signalling. Following this intriguing preclinical
evidence, an ongoing study is testing the hypothesis that diltiazem
may prevent the development of the HCM phenotype in mutation
carriers.104

In the presence of increased CaMKII activity, INaL is increased by
CaMKII-dependent phosphorylation. An increase of INaL may also be
an early change in the preclinical phase. Similar to diltiazem, INaL inhibi-
tors such as ranolazine may lead to a sustained reduction of intracellular
Ca2+, thus impacting on the signalling pathway leading to hypertrophy,
tissue remodelling, and, eventually, electrical and mechanical dysfunc-
tion of affected myocardium. Whether INaL inhibition is able to
prevent or significantly delay the onset of phenotype in mutation car-
riers remains to be assessed and deserves preclinical investigation.
This is of particular interest since ranolazine has an improved profile
when compared with diltiazem and may therefore become an important
therapeutic option to prevent disease development in young individuals
carrying high-risk mutations.

4. Targeting vascular dysfunction
and energetics
Cellular ‘energy deficiency’ is a prominent feature of HCM,105 but how
sarcomeric mutations cause this deficiency at the whole organ level is
not clearly understood. Increased energy demand and decreased
energy supply both likely contribute to the energy deprivation. Many
HCM mutations increase ‘tension cost’,106,107 meaning the amount of
ATP necessary for a unit of work is elevated, thus directly increasing

energy demand. There is also evidence that energy supply may be
compromised due to changes in substrate utilization or mitochondrial
dysfunction.108 At the cardiac level, insufficient coronary perfusion,
whether related to epicardial or microvascular abnormalities (i.e.
vessels of ,400 mm), will limit oxygen supply and exacerbate the
primary cellular energy privation related to sarcomeric mutations.

4.1 Causes and consequences of primary
energy deficiency in HCM
Energy deficiency, specifically resulting from inefficient generation of
contractile force (e.g. requiring more ATP per pN of force generated),
remains an enduring primary biophysical consequence of HCM sarco-
meric mutations.5 Sophisticated techniques interrogating human HCM
samples have confirmed this observation for the R403Q mutation in
MYH7.106 Moreover, many forms of LV hypertrophy (LVH), whether
inherited or acquired, are increasingly recognized to exhibit impaired
myocardial perfusion reserve and oxygenation that are likely to contrib-
ute to the derangement in myocardial energetics.109 In HCM, the bio-
physically driven cellular energy deficiency is a primary feature of
disease rather than the consequence of hypertrophy,110 as deduced
from the observation that energy deficiency is manifest very early in
the course of disease.111 The cumulative consequence of adaptations,
ranging from those at the cellular level through the level of the myocar-
dium (e.g. myocardial remodelling including the vasculature) to the level
of systemic response (e.g. the autonomic response), is likely to extenu-
ate this primary energy deficiency.

The immediate consequences of increased ATP demand are likely to
be on intermediary metabolism and Ca2+ kinetics. Increased energy
demand has a direct influence on metabolic pathway fluxes. Normally,
energy supply and its influence on intermediary metabolism is exquisite-
ly spatially regulated via the creatinine kinase (CK) system, reducing the
temporal delays resulting from compartmentalization of cellular activ-
ities, and globally via AMP-activated protein kinase (AMPK). Threatened
energy deficiency (i.e. increased ADP) is transmitted by the CK system,
activating AMPK, the cellular energy gauge, increasing ATP production,
and mitigating energy-consuming activities. These systems are sufficient-
ly robust to ensure that even in advanced heart failure, myocardial ATP
levels rarely fall below 75% of the levels seen in normal hearts. As a cor-
ollary, mutations in the g2 subunit of AMPK, which mimic an energy de-
ficiency signal, are a cause for HCM.112 Energy deprivation triggers
cellular hypertrophy, cell death, and replacement fibrosis, which likely
contributes to the microvascular remodelling described below. Delin-
eating the contribution of these processes on overall energy deficiency
and HCM progression remains an active research goal.113 The mechan-
ismsculminating in LVH inHCM remain obscure. While it seems intuitive
to attribute LVH to the consequences of energy deficiency on Ca2+

kinetics, perhaps via the calcineurin pathway, there is little to support
this hypothesis.

Hypertrophy per se is characterized by changes in myocardial metab-
olism including a switch from fatty acid to carbohydrate utilization. Al-
though this substrate shift is generally considered to be beneficial by
virtue of the oxygen sparing effects of carbohydrate metabolism,
there is an increasing recognition that increased carbohydrate metabol-
ism is accompanied by a shift towards anaplerotic flux which contributes
to a less energy-efficient myocardium. This substrate shift is driven byac-
tivation of the HIF1a–PPARg axis.114 This intrinsic feature of hyper-
trophy is compounded by vascular consequences of HCM, including
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chronic HIF1a activation, perpetuating substrate shifts, and driving
changes in Ca2+ handling that are likely to be detrimental.115,116

4.2 Evidence for vascular dysfunction and
ischaemia in HCM patients
The occurrence of ischaemia in HCM is a well-recognized clinical phe-
nomenon.117 HCM patients often experience chest pain and dyspnoea,
and have an elevated arrhythmia risk, all typical of myocardial ischaemia.
Circulating levels of markers of acute ischaemic damage were found to
be elevated in some studies.118,119 Histological examinations report
infarct-like areas in different stages of healing. Unlike in patients with iso-
lated coronary artery stenosis, the spatial arrangement of scarring is not
consistent with perfusion territories of larger coronary arteries, but is
patchy with principal involvement of the mid-myocardium.120,121

Several functional studies have observed a diminished coronary flow
reserve despite normal epicardial coronary arteries, proposing micro-
vascular dysfunction as an explanation.122,123 The vascular dysfunction
was found independent of the structural HCM subtype and occurs in
asymmetrical sepal as well as apical hypertrophy.124 Further evidence
for ischaemia arises from studies demonstrating hypoperfused myocar-
dial regions during exercise in .50% of patients.125,126 Stress-induced
reversible perfusion defects are found most frequently in hypertrophic
regions in patients with normal or enhanced LV function.125 However,
decreased perfusion is pathological only if tissue oxygenation is compro-
mised; a blunted tissue oxygenation response was recently directly mea-
sured during vasodilator stress in HCM mutation carriers.127 The timing
of the onset of vascular dysfunction during the disease process is cur-
rently unclear. The prevailing notion is that cardiac structural remodel-
ling precedes vascular dysfunction, although no study has demonstrated
a clear sequence. Microvascular dysfunction is often spatially associated
with tissue remodelling, but it is also found adjacent to patchy fibro-
sis.47,127 Repeated bouts of ischaemia can induce hypertrophy,128 and fi-
brosis replaces terminally damaged cardiomyocytes. Thus, it should not
be ruled out that vascular dysfunction is an early consequence of the
genetic defect, precedes or even promotes hypertrophy and fibrosis,
and contributes to the eventual development of ventricular dysfunction.

4.3 Causes for vascular dysfunction in HCM
Although some DCM gene mutations may affect vascular structure and
function directly,129 in case of HCM the mutant proteins are almost ex-
clusively expressed in cardiomyocyte. In HCM patients, the capillary
density is decreased,130 at least in hypertrophic parts, and the arteriolar
lumen of the intramural coronary arteries normalized to wall area is
lower,131 partially due to thickening of the medial and intimal
layers.132 What promotes this remodelling is currently unclear. In pul-
monary arterial hypertension, endothelial cell dysfunction leads to
similar remodelling of the pulmonary vasculature,133,134 but there is
no obvious link yet found between HCM causing mutations and endo-
thelial cell function.

Diastolic dysfunction during stress is a frequent observation in HCM
and is a potentially early consequence of the genetic defect in patient and
mouse models.91,102,104 Impaired LV relaxation and the resulting
increased filling pressure impinge on diastolic coronary perfusion par-
ticularly at faster heart rates as a result of increased extravascular com-
pression.135 Myocardial filling pressures may be further elevated in the
presence of LVOT, aggravating extravascular compression particularly
in the subendocardial layer. Consistent with this notion, surgical correc-
tion of LVOT improves myocardial blood flow reserve.136 Impaired

relaxation of the ventricle may also diminish a critical ‘suction wave’
that is generated duringnormal relaxation,which is acritical driverofdia-
stolic coronary blood flow.137 Other causes for vascular dysfunction in
HCM are less frequently discussed, but additional mechanisms likely
exist. Sarcomere mutation carriers are characterized by more severe
microvascular dysfunction and increased prevalence of myocardial fi-
brosis when compared with sarcomere non-carriers, suggesting a
direct link between sarcomere dysfunction and vascular dysfunction
that is not yet understood.138 Anatomical causes that may contribute
to ischaemia and angina symptoms include myocardial bridging, which
has an increased incidence in HCM139 and coronary vasospasm, which
also has been reported in HCM patients. It is conceivable that the meta-
bolic and energetic changes in HCM disturb metabolic coronary flow
regulation and manifest in regional vascular dysfunction, which is
largely unexplored. It is intriguing that the mechanism whereby the
matching of local oxygendemand with supply is continuouslymaintained
is poorly understood.140

To fully understand all factors that contribute to vascular dysfunction
in HCM, it will be critical to longitudinally evaluate the time of onset and
progression of vascular dysfunction in relation to other manifestations
starting in young HCM mutation carriers. It would be also valuable to
generate or identify animal models that reproduce the vascular dysfunc-
tion and display, e.g. regional perfusion defects. Myosin heavy-chain
mutant HCM mice develop focal replacement fibrosis141 and we have
recently shown that Tnnt2 mutant HCM mice develop focal energy de-
privation during stress, which was linked to increased myofilament Ca2+

sensitivity mediated by the mutation.142 Investigating the underlying
causes would be informative.

4.4 Vascular dysfunction and energy
deprivation in HCM and prognosis
Vascular dysfunction or the diminished ability to respond to hypoxia
appears to contribute to a worse prognosis in HCM mutation carriers.
Patients who have concomitant HCM and significant coronary artery
disease are at a substantially increased risk of death than comparable
patients without HCM.116 A substantial number of HCM patients have
increased high-sensitivity cardiac troponin T marker serum concentra-
tions, a circulating marker for ischaemic damage, and the level may
predict the adverse outcome.143 HCM patients with certain common
variants in hypoxia response genes, which affect the expression of
hypoxia-inducible signalling molecules, had more severe hypertrophy
and diastolic dysfunction.144 Vascular dysfunction is currently not uti-
lized as a factor to determine risk for lethal arrhythmias, with the excep-
tion of an inappropriate drop of systemic blood pressure during
exercise.145

To date, there is no evidence relating the degree of energy deficiency
to prognosis. Notwithstanding the most parsimonious explanation that
the degree of energy deficiency, as a continuous variable, does not con-
tribute to outcomes, a number of other explanations may contribute to
this lack of prognostic value. The most compelling is the relative lack of
granularity afforded by the most readily available measure of energy de-
ficiency, the PCr/ATP ratio. On an individual patient basis, this param-
eter, typically measured at rest, is a relatively noisy and insensitive
measure even in the best MRI laboratories. The PCr/ATP ratio can be
refined either through dynamic measurement146 and/or through the
measurement of flux.147 Nevertheless, the confounding effect of cellular
adaptation, maintaining the cellular energy charge to maintain the Gibbs
free energy of ATP hydrolysis that is so critical to general cellular
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function, reduces the dynamic range and hence discriminating the value
of energy parameters.

4.5 Vascular dysfunction and disturbed
energetics as therapeutic targets in HCM
Vascular dysfunction represents a promising potential target for novel
HCM therapies. Current pharmacological treatments to relieve LVOT
and angina symptoms, b-blockers and Ca2+ channel antagonists, are
thought to be largely effective because of the negative chronotropic
and inotropic effects, increasing diastolic perfusion time, and reducing
extravascular compression. In addition, verapamil has also been demon-
strated toprevent regional perfusiondefects in aconsiderable fraction of
asymptomatic HCM patients.148 Despite this, current treatment has not
been shown to alter the natural history of the disease.149 While this will
need to be confirmed in clinical trials, this is intriguing and indicates that
either the drugs are given too late and disease has progressed irrevers-
ibly, or we still lack fundamental understanding about the disease
process. Other strategies to enhance relaxation, e.g. myofilament
Ca2+ desensitization (discussed above), may exhibit a more attractive
therapeutic profile.150 We know that the coronary microvascular dys-
function importantly contributes, as it is inversely related to death
from cardiovascular causes in HCM patients as well as adverse LV re-
modelling and systolic dysfunction.69 Efforts are underway to test
drugs that have benefits in patients with diastolic dysfunction unrelated
to HCM. Typically, these drugs also influence vascular causes and conse-
quences, e.g. ranolazine, ACE inhibitors etc., and it is quite possible that
these studies will correct the underlying defect or at least point us into
the direction we need to investigate.

An alternative strategy might be to target metabolic substrate modi-
fication with a goal of altering the state of myocardial oxygenation to
augment any primary vascular therapeutic strategies. The advantage of
a metabolic approach is that it addresses a common yet proximal
cause of myocardial remodelling in HCM. The primary effect of shifting
fatty acid to carbohydrate metabolism is the benefit related to oxygen
sparing. This is especially germane to a myocardium with compromised
perfusion. The benefits of this strategy have been exemplified by success
of perhexiline (Figure 2), a partial fatty oxidation inhibitor, in the treat-
ment of symptomatic HCM as well as patients with angina.151 A more
nuanced perspective of re-balancing cardiac metabolism (i.e. other
than fatty acid vs. carbohydrate) would confer additional benefits. It
has been observed that, in LVH, glucose oxidation-derived carbon flux
is shifted away from pyruvate dehydrogenase (PDH)-derived acetyl
coenzyme A production towards anaplerosis (i.e. the use of glu-
cose-derived carbons to contribute to the backbones of metabolic
intermediates). Increased carboxylation of pyruvate via cytosolic malic
enzyme generates malate, which ultimately feeds into the citric acid
cycle (TCA). It has been argued that this shift away from direct
glucose oxidation by PDH is profligate and may represent an excellent
therapeutic target.152 While from a stoichiometric perspective
increased anaplerosis may appear profligate, increased TCA inter-
mediates may have additional benefits that have hitherto not been
considered. We have recently demonstrated that, by stabilizing the tran-
scriptional regulator Nrf2, the TCA intermediate fumarate up-regulates
protective antioxidant response element genes.153 These additional
consequences of metabolic modification may have profound influences
beyond intermediary metabolism pertinent to the consequences of
vascular privation.

Finally, it is worth bearing in mind that as well as pharmacological ther-
apies, diverse cardiac interventions such as device therapy (e.g. cardiac
resynchronization therapy) may also have an influence on HCM
through their impact on intermediary metabolism. Importantly, as
with other aspects of HCM as an archetypal cardiac disease, insights
derived from metabolic modulation in HCM may, when applied with
care, provide valuable lessons for the management of other forms of
LVH.

5. Conclusions and future directions
For a not uncommon disorder for which the pharmacological treatment
has not appreciably changed in 50 years, the preceding sections
represent an exciting look into the future of the management of sarco-
meric cardiomyopathies. The ability to identify patients at risk of devel-
oping a cardiomyopathy via genetic testing and eventually develop a
tailored, mechanistic approach to altering the natural history of the
disease process at the molecular level holds profound promise. For
example, it is important to note that some subsets of patients eventually
require cardiac transplantation, often at a young age. Even the ability to
delay the need for transplant for 10–20 years by initiation of targeted
therapies in the preclinical stage would represent a significant advance.
Moreover, the ability to directly reduce the risk of sudden cardiac
death or the onset of atrial fibrillation by mitigating ion channel remod-
elling would alter the burden of these complex cardiomypathies. While
the eventual goal of developing genotype-specific risk assessments and
fully targeted therapies still requires a more advanced understanding of
early (preclinical) disease pathogenesis, it is clear that our growing ability
to subdivide the process of LV remodelling into separate molecular and
cellular bins will provide a framework for developing specific treatment
regimens that can eventually be applied to specific genetic cohorts and
finally alter the natural history of these common disorders as opposed
to simply mitigating symptoms.
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